U.S. Code of Federal Regulations
Regulations most recently checked for updates: Jun 07, 2023
This section describes two optional methods, using propane as a tracer gas, to verify CVS and PFD flow streams. You may use good engineering judgment and safe practices to use other tracer gases, such as CO
(a) A propane check uses either a reference mass or a reference flow rate of C
(b) Prepare for the propane check as follows:
(1) If you use a reference mass of C
(2) Select appropriate flow rates for the CVS and C
(3) Select a C
(4) Operate and stabilize the CVS.
(5) Preheat or pre-cool any heat exchangers in the sampling system.
(6) Allow heated and cooled components such as sample lines, filters, chillers, and pumps to stabilize at operating temperature.
(7) You may purge the HC sampling system during stabilization.
(8) If applicable, perform a vacuum side leak verification of the HC sampling system as described in § 1065.345.
(9) You may also conduct any other calibrations or verifications on equipment or analyzers.
(c) If you performed the vacuum-side leak verification of the HC sampling system as described in paragraph (b)(8) of this section, you may use the HC contamination procedure in § 1065.520(f) to verify HC contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows:
(1) Select the lowest HC analyzer range that can measure the C
(2) Zero the HC analyzer using zero air introduced at the analyzer port.
(3) Span the HC analyzer using C
(4) Overflow zero air at the HC probe inlet or into a tee near the outlet of the probe.
(5) Measure the stable HC concentration of the HC sampling system as overflow zero air flows. For batch HC measurement, fill the batch container (such as a bag) and measure the HC overflow concentration.
(6) If the overflow HC concentration exceeds 2 µmol/mol, do not proceed until contamination is eliminated. Determine the source of the contamination and take corrective action, such as cleaning the system or replacing contaminated portions.
(7) When the overflow HC concentration does not exceed 2 µmol/mol, record this value as x
(d) Perform the propane check as follows:
(1) For batch HC sampling, connect clean storage media, such as evacuated bags.
(2) Operate HC measurement instruments according to the instrument manufacturer's instructions.
(3) If you will correct for dilution air background concentrations of HC, measure and record background HC in the dilution air.
(4) Zero any integrating devices.
(5) Begin sampling, and start any flow integrators.
(6) Release the contents of the C
(7) Continue to release the cylinder's contents until at least enough C
(8) Shut off the C
(9) Stop sampling and stop any integrators.
(e) Perform post-test procedure as follows:
(1) If you used batch sampling, analyze batch samples as soon as practical.
(2) After analyzing HC, correct for contamination and background.
(3) Calculate total C
(4) If you use a reference mass, determine the cylinder's propane mass within ±0.5% and determine the C
(5) Subtract the reference C
(f) A failed propane check might indicate one or more problems requiring corrective action, as follows:
Table 1 of § 1065.341—Troubleshooting Guide for Propane Checks
Problem | Recommended corrective action |
---|---|
Incorrect analyzer calibration | Recalibrate, repair, or replace the FID analyzer. |
Leaks | Inspect CVS tunnel, connections, fasteners, and HC sampling system. Repair or replace components. |
Poor mixing | Perform the verification as described in this section while traversing a sampling probe across the tunnel's diameter, vertically and horizontally. If the analyzer response indicates any deviation exceeding ±2% of the mean measured concentration, consider operating the CVS at a higher flow rate or installing a mixing plate or orifice to improve mixing. |
Hydrocarbon contamination in the sample system | Perform the hydrocarbon-contamination verification as described in § 1065.520. |
Change in CVS calibration | Perform a calibration of the CVS flow meter as described in § 1065.340. |
Flow meter entrance effects | Inspect the CVS tunnel to determine whether the entrance effects from the piping configuration upstream of the flow meter adversely affect the flow measurement. |
Other problems with the CVS or sampling verification hardware or software | Inspect the CVS system and related verification hardware, and software for discrepancies. |
(g) You may verify flow measurements in a PFD (usually dilution air and diluted exhaust streams) for determining the dilution ratio in the PFD using the following method:
(1) Configure the HC sampling system to extract a sample from the PFD's diluted exhaust stream (such as near a PM filter). If the absolute pressure at this location is too low to extract an HC sample, you may sample HC from the PFD's pump exhaust. Use caution when sampling from pump exhaust because an otherwise acceptable pump leak downstream of a PFD diluted exhaust flow meter will cause a false failure of the propane check.
(2) Perform the propane check described in paragraphs (b), (c), and (d) of this section, but sample HC from the PFD's diluted exhaust stream. Inject the propane in the same exhaust stream that the PFD is sampling from (either CVS or raw exhaust stack).
(3) Calculate C
(4) Subtract the reference C
(h) Table 2 of § 1065.307 describes optional verification procedures you may perform instead of linearity verification for certain flow-measurement systems. Performing carbon balance error verification also replaces any required propane checks.