U.S. Code of Federal Regulations
Regulations most recently checked for updates: Oct 12, 2024
§ 1910.1000 - Air contaminants.
An employee's exposure to any substance listed in Tables Z-1, Z-2, or Z-3 of this section shall be limited in accordance with the requirements of the following paragraphs of this section.
(a) Table Z-1—(1) Substances with limits preceded by “C”—Ceiling Values. An employee's exposure to any substance in Table Z-1, the exposure limit of which is preceded by a “C”, shall at no time exceed the exposure limit given for that substance. If instantaneous monitoring is not feasible, then the ceiling shall be assessed as a 15-minute time weighted average exposure which shall not be exceeded at any time during the working day.
(2) Other substances—8-hour Time Weighted Averages. An employee's exposure to any substance in Table Z-1, the exposure limit of which is not preceded by a “C”, shall not exceed the 8-hour Time Weighted Average given for that substance in any 8-hour work shift of a 40-hour work week.
(b) Table Z-2. An employee's exposure to any substance listed in Table Z-2 shall not exceed the exposure limits specified as follows:
(1) 8-hour time weighted averages. An employee's exposure to any substance listed in Table Z-2, in any 8-hour work shift of a 40-hour work week, shall not exceed the 8-hour time weighted average limit given for that substance in Table Z-2.
(2) Acceptable ceiling concentrations. An employee's exposure to a substance listed in Table Z-2 shall not exceed at any time during an 8-hour shift the acceptable ceiling concentration limit given for the substance in the table, except for a time period, and up to a concentration not exceeding the maximum duration and concentration allowed in the column under “acceptable maximum peak above the acceptable ceiling concentration for an 8-hour shift.”
(3) Example. During an 8-hour work shift, an employee may be exposed to a concentration of Substance A (with a 10 ppm TWA, 25 ppm ceiling and 50 ppm peak) above 25 ppm (but never above 50 ppm) only for a maximum period of 10 minutes. Such exposure must be compensated by exposures to concentrations less than 10 ppm so that the cumulative exposure for the entire 8-hour work shift does not exceed a weighted average of 10 ppm.
(c) Table Z-3. An employee's exposure to any substance listed in Table Z-3, in any 8-hour work shift of a 40-hour work week, shall not exceed the 8-hour time weighted average limit given for that substance in the table.
(d) Computation formulae. The computation formula which shall apply to employee exposure to more than one substance for which 8-hour time weighted averages are listed in subpart Z of 29 CFR part 1910 in order to determine whether an employee is exposed over the regulatory limit is as follows:
(1)(i) The cumulative exposure for an 8-hour work shift shall be computed as follows:
(ii) To illustrate the formula prescribed in paragraph (d)(1)(i) of this section, assume that Substance A has an 8-hour time weighted average limit of 100 ppm noted in Table Z-1. Assume that an employee is subject to the following exposure:
Substituting this information in the formula, we have
Since 81.25 ppm is less than 100 ppm, the 8-hour time weighted average limit, the exposure is acceptable.
(2)(i) In case of a mixture of air contaminants an employer shall compute the equivalent exposure as follows:
(ii) To illustrate the formula prescribed in paragraph (d)(2)(i) of this section, consider the following exposures:
Substance | Actual concentration of 8-hour exposure (ppm) | 8-hour TWA PEL (ppm) |
---|---|---|
B | 500 | 1,000 |
C | 45 | 200 |
D | 40 | 200 |
Substituting in the formula, we have:
(e) To achieve compliance with paragraphs (a) through (d) of this section, administrative or engineering controls must first be determined and implemented whenever feasible. When such controls are not feasible to achieve full compliance, protective equipment or any other protective measures shall be used to keep the exposure of employees to air contaminants within the limits prescribed in this section. Any equipment and/or technical measures used for this purpose must be approved for each particular use by a competent industrial hygienist or other technically qualified person. Whenever respirators are used, their use shall comply with 1910.134.
Table Z-1—Limits for Air Contaminants
Substance | CAS No. (c) | ppm (a) 1 | mg/m 3 (b) 1 | Skin designation |
---|---|---|---|---|
Acetaldehyde | 75-07-0 | 200 | 360 | |
Acetic acid | 64-19-7 | 10 | 25 | |
Acetic anhydride | 108-24-7 | 5 | 20 | |
Acetone | 67-64-1 | 1000 | 2400 | |
Acetonitrile | 75-05-8 | 40 | 70 | |
2-Acetylaminofluorine; see 1910.1014 | 53-96-3 | |||
Acetylene dichloride; see 1,2-Dichloroethylene. | ||||
Acetylene tetrabromide | 79-27-6 | 1 | 14 | |
Acrolein | 107-02-8 | 0.1 | 0.25 | |
Acrylamide | 79-06-1 | 0.3 | X | |
Acrylonitrile; see 1910.1045 | 107-13-1 | |||
Aldrin | 309-00-2 | 0.25 | X | |
Allyl alcohol | 107-18-6 | 2 | 5 | X |
Allyl chloride | 107-05-1 | 1 | 3 | |
Allyl glycidyl ether (AGE) | 106-92-3 | (C)10 | (C)45 | |
Allyl propyl disulfide | 2179-59-1 | 2 | 12 | |
alpha-Alumina | 1344-28-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Aluminum, metal (as Al) | 7429-90-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
4-Aminodiphenyl; see 1910.1011 | 92-67-1 | |||
2-Aminoethanol; see Ethanolamine. | ||||
2-Aminopyridine | 504-29-0 | 0.5 | 2 | |
Ammonia | 7664-41-7 | 50 | 35 | |
Ammonium sulfamate | 7773-06-0 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
n-Amyl acetate | 628-63-7 | 100 | 525 | |
sec-Amyl acetate | 626-38-0 | 125 | 650 | |
Aniline and homologs | 62-53-3 | 5 | 19 | X |
Anisidine (o-, p-isomers) | 29191-52-4 | 0.5 | X | |
Antimony and compounds (as Sb) | 7440-36-0 | 0.5 | ||
ANTU (alpha Naphthylthiourea) | 86-88-4 | 0.3 | ||
Arsenic, inorganic compounds (as As); see 1910.1018 | 7440-38-2 | |||
Arsenic, organic compounds (as As) | 7440-38-2 | 0.5 | ||
Arsine | 7784-42-1 | 0.05 | 0.2 | |
Asbestos; see 1910.1001 | ( 4) | |||
Azinphos-methyl | 86-50-0 | 0.2 | X | |
Barium, soluble compounds (as Ba) | 7440-39-3 | 0.5 | ||
Barium sulfate | 7727-43-7 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Benomyl | 17804-35-2 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Benzene; see 1910.1028 | 71-43-2 | |||
See Table Z-2 for the limits applicable in the operations or sectors excluded in 1910.1028 d | ||||
Benzidine; see 1910.1010 | 92-87-5 | |||
p-Benzoquinone; see Quinone. | ||||
Benzo(a)pyrene; see Coal tar pitch volatiles. | ||||
Benzoyl peroxide | 94-36-0 | 5 | ||
Benzyl chloride | 100-44-7 | 1 | 5 | |
Beryllium and beryllium compounds (as Be); see 1926.1124 8 | 7440-41-7 | |||
Biphenyl; see Diphenyl. | ||||
Bismuth telluride, Undoped | 1304-82-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Boron oxide | 1303-86-2 | |||
Total dust | 15 | |||
Boron trifluoride | 7637-07-2 | (C)1 | (C)3 | |
Bromine | 7726-95-6 | 0.1 | 0.7 | |
Bromoform | 75-25-2 | 0.5 | 5 | X |
Butadiene (1,3-Butadiene); See 29 CFR 1910.1051; 29 CFR 1910.19(l) | 106-99-0 | 1 ppm/5 ppm STEL | ||
Butanethiol; see Butyl mercaptan. | ||||
2-Butanone (Methyl ethyl ketone) | 78-93-3 | 200 | 590 | |
2-Butoxyethanol | 111-76-2 | 50 | 240 | X |
n-Butyl-acetate | 123-86-4 | 150 | 710 | |
sec-Butyl acetate | 105-46-4 | 200 | 950 | |
tert-Butyl acetate | 540-88-5 | 200 | 950 | |
n-Butyl alcohol | 71-36-3 | 100 | 300 | |
sec-Butyl alcohol | 78-92-2 | 150 | 450 | |
tert-Butyl alcohol | 75-65-0 | 100 | 300 | |
Butylamine | 109-73-9 | (C)5 | (C)15 | X |
tert-Butyl chromate (as CrO | 1189-85-1 | |||
n-Butyl glycidyl ether (BGE) | 2426-08-6 | 50 | 270 | |
Butyl mercaptan | 109-79-5 | 10 | 35 | |
p-tert-Butyltoluene | 98-51-1 | 10 | 60 | |
Cadmium (as Cd); see 1910.1027 | 7440-43-9 | |||
Calcium carbonate | 1317-65-3 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Calcium hydroxide | 1305-62-0 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Calcium oxide | 1305-78-8 | 5 | ||
Calcium silicate | 1344-95-2 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Calcium sulfate | 7778-18-9 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Camphor, synthetic | 76-22-2 | 2 | ||
Carbaryl (Sevin) | 63-25-2 | 5 | ||
Carbon black | 1333-86-4 | 3.5 | ||
Carbon dioxide | 124-38-9 | 5000 | 9000 | |
Carbon disulfide | 75-15-0 | ( 2) | ||
Carbon monoxide | 630-08-0 | 50 | 55 | |
Carbon tetrachloride | 56-23-5 | ( 2) | ||
Cellulose | 9004-34-6 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Chlordane | 57-74-9 | 0.5 | X | |
Chlorinated camphene | 8001-35-2 | 0.5 | X | |
Chlorinated diphenyl oxide | 55720-99-5 | 0.5 | ||
Chlorine | 7782-50-5 | (C)1 | (C)3 | |
Chlorine dioxide | 10049-04-4 | 0.1 | 0.3 | |
Chlorine trifluoride | 7790-91-2 | (C)0.1 | (C)0.4 | |
Chloroacetaldehyde | 107-20-0 | (C)1 | (C)3 | |
a-Chloroacetophenone (Phenacyl chloride) | 532-27-4 | 0.05 | 0.3 | |
Chlorobenzene | 108-90-7 | 75 | 350 | |
o-Chlorobenzylidene malononitrile | 2698-41-1 | 0.05 | 0.4 | |
Chlorobromomethane | 74-97-5 | 200 | 1050 | |
2-Chloro-1,3-butadiene; see beta-Chloroprene. | ||||
Chlorodiphenyl (42% Chlorine) (PCB) | 53469-21-9 | 1 | X | |
Chlorodiphenyl (54% Chlorine) (PCB) | 11097-69-1 | 0.5 | X | |
1-Chloro-2,3-epoxypropane; see Epichlorohydrin. | ||||
2-Chloroethanol; see Ethylene chlorohydrin. | ||||
Chloroethylene; see Vinyl chloride. | ||||
Chloroform (Trichloromethane) | 67-66-3 | (C)50 | (C)240 | |
bis(Chloromethyl) ether; see 1910.1008 | 542-88-1 | |||
Chloromethyl methyl ether; see 1910.1006 | 107-30-2 | |||
1-Chloro-1-nitropropane | 600-25-9 | 20 | 100 | |
Chloropicrin | 76-06-2 | 0.1 | 0.7 | |
beta-Chloroprene | 126-99-8 | 25 | 90 | X |
2-Chloro-6-(trichloromethyl) pyridine | 1929-82-4 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Chromium (II) compounds. | ||||
(as Cr) | 7440-47-3 | 0.5 | ||
Chromium (III) compounds. | ||||
(as Cr) | 7440-47-3 | 0.5 | ||
Chromium (VI) compounds; See 1910.1026 5 | ||||
Chromium metal and insol. salts (as Cr) | 7440-47-3 | 1 | ||
Chrysene; see Coal tar pitch volatiles. | ||||
Clopidol | 2971-90-6 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Coal dust (less than 5% SiO | ( 3) | |||
Coal dust (greater than or equal to 5% SiO | ( 3) | |||
Coal tar pitch volatiles (benzene soluble fraction), anthracene, BaP, phenanthrene, acridine, chrysene, pyrene | 65966-93-2 | 0.2 | ||
Cobalt metal, dust, and fume (as Co) | 7440-48-4 | 0.1 | ||
Coke oven emissions; see 1910.1029. | ||||
Copper | 7440-50-8 | |||
Fume (as Cu) | 0.1 | |||
Dusts and mists (as Cu) | 1 | |||
Cotton dust e; see 1910.1043 | 1 | |||
Crag herbicide (Sesone) | 136-78-7 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Cresol, all isomers | 1319-77-3 | 5 | 22 | X |
Crotonaldehyde | 123-73-9;
4170-30-3 | 2 | 6 | |
Cumene | 98-82-8 | 50 | 245 | X |
Cyanides (as CN) | ( 4) | 5 | X | |
Cyclohexane | 110-82-7 | 300 | 1050 | |
Cyclohexanol | 108-93-0 | 50 | 200 | |
Cyclohexanone | 108-94-1 | 50 | 200 | |
Cyclohexene | 110-83-8 | 300 | 1015 | |
Cyclopentadiene | 542-92-7 | 75 | 200 | |
2,4-D (Dichlorophenoxyacetic acid) | 94-75-7 | 10 | ||
Decaborane | 17702-41-9 | 0.05 | 0.3 | X |
Demeton (Systox) | 8065-48-3 | 0.1 | X | |
Diacetone alcohol (4-Hydroxy-4-methyl-2-pentanone) | 123-42-2 | 50 | 240 | |
1,2-Diaminoethane; see Ethylenediamine. | ||||
Diazomethane | 334-88-3 | 0.2 | 0.4 | |
Diborane | 19287-45-7 | 0.1 | 0.1 | |
1,2-Dibromo-3-chloropropane (DBCP); see 1910.1044 | 96-12-8 | |||
1,2-Dibromoethane; see Ethylene dibromide. | ||||
Dibutyl phosphate | 107-66-4 | 1 | 5 | |
Dibutyl phthalate | 84-74-2 | 5 | ||
o-Dichlorobenzene | 95-50-1 | (C)50 | (C)300 | |
p-Dichlorobenzene | 106-46-7 | 75 | 450 | |
3,′-Dichlorobenzidine; see 1910.1007 | 91-94-1 | |||
Dichlorodifluoromethane | 75-71-8 | 1000 | 4950 | |
1,3-Dichloro-5,5-dimethyl hydantoin | 118-52-5 | 0.2 | ||
Dichlorodiphenyltrichloroethane (DDT) | 50-29-3 | 1 | X | |
1,1-Dichloroethane | 75-34-3 | 100 | 400 | |
1,2-Dichloroethane; see Ethylene dichloride. | ||||
1,2-Dichloroethylene | 540-59-0 | 200 | 790 | |
Dichloroethyl ether | 111-44-4 | (C)15 | (C)90 | X |
Dichloromethane; see Methylene chloride. | ||||
Dichloromonofluoromethane | 75-43-4 | 1000 | 4200 | |
1,1-Dichloro-1-nitroethane | 594-72-9 | (C)10 | (C)60 | |
1,2-Dichloropropane; see Propylene dichloride. | ||||
Dichlorotetrafluoroethane | 76-14-2 | 1000 | 7000 | |
Dichlorvos (DDVP) | 62-73-7 | 1 | X | |
Dicyclopentadienyl iron | 102-54-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Dieldrin | 60-57-1 | 0.25 | X | |
Diethylamine | 109-89-7 | 25 | 75 | |
2-Diethylaminoethanol | 100-37-8 | 10 | 50 | X |
Diethyl ether; see Ethyl ether. | ||||
Difluorodibromomethane | 75-61-6 | 100 | 860 | |
Diglycidyl ether (DGE) | 2238-07-5 | (C)0.5 | (C)2.8 | |
Dihydroxybenzene; see Hydroquinone. | ||||
Diisobutyl ketone | 108-83-8 | 50 | 290 | |
Diisopropylamine | 108-18-9 | 5 | 20 | X |
4-Dimethylaminoazobenzene; see 1910.1015 | 60-11-7 | |||
Dimethoxymethane; see Methylal. | ||||
Dimethyl acetamide | 127-19-5 | 10 | 35 | X |
Dimethylamine | 124-40-3 | 10 | 18 | |
Dimethylaminobenzene; see Xylidine | ||||
Dimethylaniline (N,N-Dimethylaniline) | 121-69-7 | 5 | 25 | X |
Dimethylbenzene; see Xylene. | ||||
Dimethyl-1,2-dibromo-2,2-dichloroethyl phosphate | 300-76-5 | 3 | ||
Dimethylformamide | 68-12-2 | 10 | 30 | X |
2,6-Dimethyl-4-heptanone; see Diisobutyl ketone. | ||||
1,1-Dimethylhydrazine | 57-14-7 | 0.5 | 1 | X |
Dimethylphthalate | 131-11-3 | 5 | ||
Dimethyl sulfate | 77-78-1 | 1 | 5 | X |
Dinitrobenzene (all isomers) | 1 | X | ||
(ortho) | 528-29-0 | |||
(meta) | 99-65-0 | |||
(para) | 100-25-4 | |||
Dinitro-o-cresol | 534-52-1 | 0.2 | X | |
Dinitrotoluene | 25321-14-6 | 1.5 | X | |
Dioxane (Diethylene dioxide) | 123-91-1 | 100 | 360 | X |
Diphenyl (Biphenyl) | 92-52-4 | 0.2 | 1 | |
Diphenylmethane diisocyanate; see Methylene bisphenyl isocyanate. | ||||
Dipropylene glycol methyl ether | 34590-94-8 | 100 | 600 | X |
Di-sec octyl phthalate (Di-(2-ethylhexyl) phthalate) | 117-81-7 | 5 | ||
Emery | 12415-34-8 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Endrin | 72-20-8 | 0.1 | X | |
Epichlorohydrin | 106-89-8 | 5 | 19 | X |
EPN | 2104-64-5 | 0.5 | X | |
1,2-Epoxypropane; see Propylene oxide. | ||||
2,3-Epoxy-1-propanol; see Glycidol. | ||||
Ethanethiol; see Ethyl mercaptan. | ||||
Ethanolamine | 141-43-5 | 3 | 6 | |
2-Ethoxyethanol (Cellosolve) | 110-80-5 | 200 | 740 | X |
2-Ethoxyethyl acetate (Cellosolve acetate) | 111-15-9 | 100 | 540 | X |
Ethyl acetate | 141-78-6 | 400 | 1400 | |
Ethyl acrylate | 140-88-5 | 25 | 100 | X |
Ethyl alcohol (Ethanol) | 64-17-5 | 1000 | 1900 | |
Ethylamine | 75-04-7 | 10 | 18 | |
Ethyl amyl ketone (5-Methyl-3-heptanone) | 541-85-5 | 25 | 130 | |
Ethyl benzene | 100-41-4 | 100 | 435 | |
Ethyl bromide | 74-96-4 | 200 | 890 | |
Ethyl butyl ketone (3-Heptanone) | 106-35-4 | 50 | 230 | |
Ethyl chloride | 75-00-3 | 1000 | 2600 | |
Ethyl ether | 60-29-7 | 400 | 1200 | |
Ethyl formate | 109-94-4 | 100 | 300 | |
Ethyl mercaptan | 75-08-1 | (C)10 | (C)25 | |
Ethyl silicate | 78-10-4 | 100 | 850 | |
Ethylene chlorohydrin | 107-07-3 | 5 | 16 | X |
Ethylenediamine | 107-15-3 | 10 | 25 | |
Ethylene dibromide | 106-93-4 | ( 2) | ||
Ethylene dichloride (1,2-Dichloroethane) | 107-06-2 | ( 2) | ||
Ethylene glycol dinitrate | 628-96-6 | (C)0.2 | (C)1 | X |
Ethylene glycol methyl acetate; see Methyl cellosolve acetate. | ||||
Ethyleneimine; see 1910.1012 | 151-56-4 | |||
Ethylene oxide; see 1910.1047 | 75-21-8 | |||
Ethylidene chloride; see 1,1-Dichloroethane. | ||||
N-Ethylmorpholine | 100-74-3 | 20 | 94 | X |
Ferbam | 14484-64-1 | |||
Total dust | 15 | |||
Ferrovanadium dust | 12604-58-9 | 1 | ||
Fluorides (as F) | ( 4) | 2.5 | ||
Fluorine | 7782-41-4 | 0.1 | 0.2 | |
Fluorotrichloromethane (Trichlorofluoromethane) | 75-69-4 | 1000 | 5600 | |
Formaldehyde; see 1910.1048 | 50-00-0 | |||
Formic acid | 64-18-6 | 5 | 9 | |
Furfural | 98-01-1 | 5 | 20 | X |
Furfuryl alcohol | 98-00-0 | 50 | 200 | |
Grain dust (oat, wheat, barley) | 10 | |||
Glycerin (mist) | 56-81-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Glycidol | 556-52-5 | 50 | 150 | |
Glycol monoethyl ether; see 2-Ethoxyethanol. | ||||
Graphite, natural, respirable dust | 7782-42-5 | ( 3) | ||
Graphite, synthetic | ||||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Guthion; see Azinphos methyl. | ||||
Gypsum | 13397-24-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Hafnium | 7440-58-6 | 0.5 | ||
Heptachlor | 76-44-8 | 0.5 | X | |
Heptane (n-Heptane) | 142-82-5 | 500 | 2000 | |
Hexachloroethane | 67-72-1 | 1 | 10 | X |
Hexachloronaphthalene | 1335-87-1 | 0.2 | X | |
n-Hexane | 110-54-3 | 500 | 1800 | |
2-Hexanone (Methyl n-butyl ketone) | 591-78-6 | 100 | 410 | |
Hexone (Methyl isobutyl ketone) | 108-10-1 | 100 | 410 | |
sec-Hexyl acetate | 108-84-9 | 50 | 300 | |
Hydrazine | 302-01-2 | 1 | 1.3 | X |
Hydrogen bromide | 10035-10-6 | 3 | 10 | |
Hydrogen chloride | 7647-01-0 | (C)5 | (C)7 | |
Hydrogen cyanide | 74-90-8 | 10 | 11 | X |
Hydrogen fluoride (as F) | 7664-39-3 | ( 2) | ||
Hydrogen peroxide | 7722-84-1 | 1 | 1.4 | |
Hydrogen selenide (as Se) | 7783-07-5 | 0.05 | 0.2 | |
Hydrogen sulfide | 7783-06-4 | ( 2) | ||
Hydroquinone | 123-31-9 | 2 | ||
Iodine | 7553-56-2 | (C)0.1 | (C)1 | |
Iron oxide fume | 1309-37-1 | 10 | ||
Isoamyl acetate | 123-92-2 | 100 | 525 | |
Isoamyl alcohol (primary and secondary) | 123-51-3 | 100 | 360 | |
Isobutyl acetate | 110-19-0 | 150 | 700 | |
Isobutyl alcohol | 78-83-1 | 100 | 300 | |
Isophorone | 78-59-1 | 25 | 140 | |
Isopropyl acetate | 108-21-4 | 250 | 950 | |
Isopropyl alcohol | 67-63-0 | 400 | 980 | |
Isopropylamine | 75-31-0 | 5 | 12 | |
Isopropyl ether | 108-20-3 | 500 | 2100 | |
Isopropyl glycidyl ether (IGE) | 4016-14-2 | 50 | 240 | |
Kaolin | 1332-58-7 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Ketene | 463-51-4 | 0.5 | 0.9 | |
Lead, inorganic (as Pb); see 1910.1025 | 7439-92-1 | |||
Limestone | 1317-65-3 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Lindane | 58-89-9 | 0.5 | X | |
Lithium hydride | 7580-67-8 | 0.025 | ||
L.P.G. (Liquefied petroleum gas) | 68476-85-7 | 1000 | 1800 | |
Magnesite | 546-93-0 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Magnesium oxide fume | 1309-48-4 | |||
Total particulate | 15 | |||
Malathion | 121-75-5 | |||
Total dust | 15 | X | ||
Maleic anhydride | 108-31-6 | 0.25 | 1 | |
Manganese compounds (as Mn) | 7439-96-5 | (C)5 | ||
Manganese fume (as Mn) | 7439-96-5 | (C)5 | ||
Marble | 1317-65-3 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Mercury (aryl and inorganic) (as Hg) | 7439-97-6 | ( 2) | ||
Mercury (organo) alkyl compounds (as Hg) | 7439-97-6 | ( 2) | ||
Mercury (vapor) (as Hg) | 7439-97-6 | ( 2) | ||
Mesityl oxide | 141-79-7 | 25 | 100 | |
Methanethiol; see Methyl mercaptan. | ||||
Methoxychlor | 72-43-5 | |||
Total dust | 15 | |||
2-Methoxyethanol (Methyl cellosolve) | 109-86-4 | 25 | 80 | X |
2-Methoxyethyl acetate (Methyl cellosolve acetate) | 110-49-6 | 25 | 120 | X |
Methyl acetate | 79-20-9 | 200 | 610 | |
Methyl acetylene (Propyne) | 74-99-7 | 1000 | 1650 | |
Methyl acetylene-propadiene mixture (MAPP) | 1000 | 1800 | ||
Methyl acrylate | 96-33-3 | 10 | 35 | X |
Methylal (Dimethoxy-methane) | 109-87-5 | 1000 | 3100 | |
Methyl alcohol | 67-56-1 | 200 | 260 | |
Methylamine | 74-89-5 | 10 | 12 | |
Methyl amyl alcohol; see Methyl isobutyl carbinol. | ||||
Methyl n-amyl ketone | 110-43-0 | 100 | 465 | |
Methyl bromide | 74-83-9 | (C)20 | (C)80 | X |
Methyl butyl ketone; see 2-Hexanone. | ||||
Methyl cellosolve; see 2-Methoxyethanol. | ||||
Methyl cellosolve acetate; see 2-Methoxyethyl acetate. | ||||
Methyl chloride | 74-87-3 | ( 2) | ||
Methyl chloroform (1,1,1-Trichloroethane) | 71-55-6 | 350 | 1900 | |
Methylcyclohexane | 108-87-2 | 500 | 2000 | |
Methylcyclohexanol | 25639-42-3 | 100 | 470 | |
o-Methylcyclohexanone | 583-60-8 | 100 | 460 | X |
Methylene chloride | 75-09-2 | ( 2) | ||
Methyl ethyl ketone (MEK); see 2-Butanone. | ||||
Methyl formate | 107-31-3 | 100 | 250 | |
Methyl hydrazine (Monomethyl hydrazine) | 60-34-4 | (C)0.2 | (C)0.35 | X |
Methyl iodide | 74-88-4 | 5 | 28 | X |
Methyl isoamyl ketone | 110-12-3 | 100 | 475 | |
Methyl isobutyl carbinol | 108-11-2 | 25 | 100 | X |
Methyl isobutyl ketone; see Hexone. | ||||
Methyl isocyanate | 624-83-9 | 0.02 | 0.05 | X |
Methyl mercaptan | 74-93-1 | (C)10 | (C)20 | |
Methyl methacrylate | 80-62-6 | 100 | 410 | |
Methyl propyl ketone; see 2-Pentanone. | ||||
alpha-Methyl styrene | 98-83-9 | (C)100 | (C)480 | |
Methylene bisphenyl isocyanate (MDI) | 101-68-8 | (C)0.02 | (C)0.2 | |
Mica; see Silicates. | ||||
Molybdenum (as Mo) | 7439-98-7 | |||
Soluble compounds | 5 | |||
Insoluble compounds. | ||||
Total dust | 15 | |||
Monomethyl aniline | 100-61-8 | 2 | 9 | X |
Monomethyl hydrazine; see Methyl hydrazine. | ||||
Morpholine | 110-91-8 | 20 | 70 | X |
Naphtha (Coal tar) | 8030-30-6 | 100 | 400 | |
Naphthalene | 91-20-3 | 10 | 50 | |
alpha-Naphthylamine; see 1910.1004 | 134-32-7 | |||
beta-Naphthylamine; see 1910.1009 | 91-59-8 | |||
Nickel carbonyl (as Ni) | 13463-39-3 | 0.001 | 0.007 | |
Nickel, metal and insoluble compounds (as Ni) | 7440-02-0 | 1 | ||
Nickel, soluble compounds (as Ni) | 7440-02-0 | 1 | ||
Nicotine | 54-11-5 | 0.5 | X | |
Nitric acid | 7697-37-2 | 2 | 5 | |
Nitric oxide | 10102-43-9 | 25 | 30 | |
p-Nitroaniline | 100-01-6 | 1 | 6 | X |
Nitrobenzene | 98-95-3 | 1 | 5 | X |
p-Nitrochlorobenzene | 100-00-5 | 1 | X | |
4-Nitrodiphenyl; see 1910.1003 | 92-93-3 | |||
Nitroethane | 79-24-3 | 100 | 310 | |
Nitrogen dioxide | 10102-44-0 | (C)5 | (C)9 | |
Nitrogen trifluoride | 7783-54-2 | 10 | 29 | |
Nitroglycerin | 55-63-0 | (C)0.2 | (C)2 | X |
Nitromethane | 75-52-5 | 100 | 250 | |
1-Nitropropane | 108-03-2 | 25 | 90 | |
2-Nitropropane | 79-46-9 | 25 | 90 | |
N-Nitrosodimethylamine; see 1910.1016. | ||||
Nitrotoluene (all isomers) | 5 | 30 | X | |
o-isomer | 88-72-2 | |||
m-isomer | 99-08-1 | |||
p-isomer | 99-99-0 | |||
Nitrotrichloromethane; see Chloropicrin. | ||||
Octachloronaphthalene | 2234-13-1 | 0.1 | X | |
Octane | 111-65-9 | 500 | 2350 | |
Oil mist, mineral | 8012-95-1 | 5 | ||
Osmium tetroxide (as Os) | 20816-12-0 | 0.002 | ||
Oxalic acid | 144-62-7 | 1 | ||
Oxygen difluoride | 7783-41-7 | 0.05 | 0.1 | |
Ozone | 10028-15-6 | 0.1 | 0.2 | |
Paraquat, respirable dust | 4685-14-7;
1910-42-5; 2074-50-2 | 0.5 | X | |
Parathion | 56-38-2 | 0.1 | X | |
Particulates not otherwise regulated (PNOR) f. | ||||
Total dust | 15 | |||
Respirable fraction | 5 | |||
PCB; see Chlorodiphenyl (42% and 54% chlorine). | ||||
Pentaborane | 19624-22-7 | 0.005 | 0.01 | |
Pentachloronaphthalene | 1321-64-8 | 0.5 | X | |
Pentachlorophenol | 87-86-5 | 0.5 | X | |
Pentaerythritol | 115-77-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Pentane | 109-66-0 | 1000 | 2950 | |
2-Pentanone (Methyl propyl ketone) | 107-87-9 | 200 | 700 | |
Perchloroethylene (Tetrachloroethylene) | 127-18-4 | ( 2) | ||
Perchloromethyl mercaptan | 594-42-3 | 0.1 | 0.8 | |
Perchloryl fluoride | 7616-94-6 | 3 | 13.5 | |
Petroleum distillates (Naphtha) (Rubber Solvent) | 500 | 2000 | ||
Phenol | 108-95-2 | 5 | 19 | X |
p-Phenylene diamine | 106-50-3 | 0.1 | X | |
Phenyl ether, vapor | 101-84-8 | 1 | 7 | |
Phenyl ether-biphenyl mixture, vapor | 1 | 7 | ||
Phenylethylene; see Styrene. | ||||
Phenyl glycidyl ether (PGE) | 122-60-1 | 10 | 60 | |
Phenylhydrazine | 100-63-0 | 5 | 22 | X |
Phosdrin (Mevinphos) | 7786-34-7 | 0.1 | X | |
Phosgene (Carbonyl chloride) | 75-44-5 | 0.1 | 0.4 | |
Phosphine | 7803-51-2 | 0.3 | 0.4 | |
Phosphoric acid | 7664-38-2 | 1 | ||
Phosphorus (yellow) | 7723-14-0 | 0.1 | ||
Phosphorus pentachloride | 10026-13-8 | 1 | ||
Phosphorus pentasulfide | 1314-80-3 | 1 | ||
Phosphorus trichloride | 7719-12-2 | 0.5 | 3 | |
Phthalic anhydride | 85-44-9 | 2 | 12 | |
Picloram | 1918-02-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Picric acid | 88-89-1 | 0.1 | X | |
Pindone (2-Pivalyl-1,3-indandione) | 83-26-1 | 0.1 | ||
Plaster of Paris | 26499-65-0 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Platinum (as Pt) | 7440-06-4 | |||
Metal | ||||
Soluble salts | 0.002 | |||
Portland cement | 65997-15-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Propane | 74-98-6 | 1000 | 1800 | |
beta-Propriolactone; see 1910.1013 | 57-57-8 | |||
n-Propyl acetate | 109-60-4 | 200 | 840 | |
n-Propyl alcohol | 71-23-8 | 200 | 500 | |
n-Propyl nitrate | 627-13-4 | 25 | 110 | |
Propylene dichloride | 78-87-5 | 75 | 350 | |
Propylene imine | 75-55-8 | 2 | 5 | X |
Propylene oxide | 75-56-9 | 100 | 240 | |
Propyne; see Methyl acetylene. | ||||
Pyrethrum | 8003-34-7 | 5 | ||
Pyridine | 110-86-1 | 5 | 15 | |
Quinone | 106-51-4 | 0.1 | 0.4 | |
RDX; see Cyclonite. | ||||
Rhodium (as Rh), metal fume and insoluble compounds | 7440-16-6 | 0.1 | ||
Rhodium (as Rh), soluble compounds | 7440-16-6 | 0.001 | ||
Ronnel | 299-84-3 | 15 | ||
Rotenone | 83-79-4 | 5 | ||
Rouge | ||||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Selenium compounds (as Se) | 7782-49-2 | 0.2 | ||
Selenium hexafluoride (as Se) | 7783-79-1 | 0.05 | 0.4 | |
Silica, amorphous, precipitated and gel | 112926-00-8 | ( 3) | ||
Silica, amorphous, diatomaceous earth, containing less than 1% crystalline silica | 61790-53-2 | ( 3) | ||
Silica, crystalline, respirable dust | ||||
Cristobalite; see 1910.1053 7 | 14464-46-1 | |||
Quartz; see 1910.1053 7 | 14808-60-7 | |||
Tripoli (as quartz); see 1910.1053 7 | 1317-95-9 | |||
Tridymite; see 1910.1053 7 | 15468-32-3 | |||
Silica, fused, respirable dust | 60676-86-0 | ( 3) | ||
Silicates (less than 1% crystalline silica) | ||||
Mica (respirable dust) | 12001-26-2 | ( 3) | ||
Soapstone, total dust | ( 3) | |||
Soapstone, respirable dust | ( 3) | |||
Talc (containing asbestos); use asbestos limit; see 29 CFR 1910.1001 | ( 3) | |||
Talc (containing no asbestos), respirable dust | 14807-96-6 | ( 3) | ||
Tremolite, asbestiform; see 1910.1001. | ||||
Silicon | 7440-21-3 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Silicon carbide | 409-21-2 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Silver, metal and soluble compounds (as Ag) | 7440-22-4 | 0.01 | ||
Soapstone; see Silicates. | ||||
Sodium fluoroacetate | 62-74-8 | 0.05 | X | |
Sodium hydroxide | 1310-73-2 | 2 | ||
Starch | 9005-25-8 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Stibine | 7803-52-3 | 0.1 | 0.5 | |
Stoddard solvent | 8052-41-3 | 500 | 2900 | |
Strychnine | 57-24-9 | 0.15 | ||
Styrene | 100-42-5 | ( 2) | ||
Sucrose | 57-50-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Sulfur dioxide | 7446-09-5 | 5 | 13 | |
Sulfur hexafluoride | 2551-62-4 | 1000 | 6000 | |
Sulfuric acid | 7664-93-9 | 1 | ||
Sulfur monochloride | 10025-67-9 | 1 | 6 | |
Sulfur pentafluoride | 5714-22-7 | 0.025 | 0.25 | |
Sulfuryl fluoride | 2699-79-8 | 5 | 20 | |
Systox; see Demeton. | ||||
2,4,5-T (2,4,5-trichlorophenoxyacetic acid) | 93-76-5 | 10 | ||
Talc; see Silicates. | ||||
Tantalum, metal and oxide dust | 7440-25-7 | 5 | ||
TEDP (Sulfotep) | 3689-24-5 | 0.2 | X | |
Tellurium and compounds (as Te) | 13494-80-9 | 0.1 | ||
Tellurium hexafluoride (as Te) | 7783-80-4 | 0.02 | 0.2 | |
Temephos | 3383-96-8 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
TEPP (Tetraethyl pyrophosphate) | 107-49-3 | 0.05 | X | |
Terphenyls | 26140-60-3 | (C)1 | (C)9 | |
1,1,1,2-Tetrachloro-2,2-difluoroethane | 76-11-9 | 500 | 4170 | |
1,1,2,2-Tetrachloro-1,2-difluoroethane | 76-12-0 | 500 | 4170 | |
1,1,2,2-Tetrachloroethane | 79-34-5 | 5 | 35 | X |
Tetrachloroethylene; see Perchloroethylene. | ||||
Tetrachloromethane; see Carbon tetrachloride. | ||||
Tetrachloronaphthalene | 1335-88-2 | 2 | X | |
Tetraethyl lead (as Pb) | 78-00-2 | 0.075 | X | |
Tetrahydrofuran | 109-99-9 | 200 | 590 | |
Tetramethyl lead (as Pb) | 75-74-1 | 0.075 | X | |
Tetramethyl succinonitrile | 3333-52-6 | 0.5 | 3 | X |
Tetranitromethane | 509-14-8 | 1 | 8 | |
Tetryl (2,4,6-Trinitrophenylmethylnitramine) | 479-45-8 | 1.5 | X | |
Thallium, soluble compounds (as Tl) | 7440-28-0 | 0.1 | X | |
4,4′-Thiobis (6-tert, Butyl-m-cresol) | 96-69-5 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Thiram | 137-26-8 | 5 | ||
Tin, inorganic compounds (except oxides) (as Sn) | 7440-31-5 | 2 | ||
Tin, organic compounds (as Sn) | 7440-31-5 | 0.1 | ||
Titanium dioxide | 13463-67-7 | |||
Total dust | 15 | |||
Toluene | 108-88-3 | ( 2) | ||
Toluene-2,4-diisocyanate (TDI) | 584-84-9 | (C)0.02 | (C)0.14 | |
o-Toluidine | 95-53-4 | 5 | 22 | X |
Toxaphene; see Chlorinated camphene. | ||||
Tremolite; see Silicates. | ||||
Tributyl phosphate | 126-73-8 | 5 | ||
1,1,1-Trichloroethane; see Methyl chloroform. | ||||
1,1,2-Trichloroethane | 79-00-5 | 10 | 45 | X |
Trichloroethylene | 79-01-6 | ( 2) | ||
Trichloromethane; see Chloroform. | ||||
Trichloronaphthalene | 1321-65-9 | 5 | X | |
1,2,3-Trichloropropane | 96-18-4 | 50 | 300 | |
1,1,2-Trichloro-1,2,2-trifluoroethane | 76-13-1 | 1000 | 7600 | |
Triethylamine | 121-44-8 | 25 | 100 | |
Trifluorobromomethane | 75-63-8 | 1000 | 6100 | |
2,4,6-Trinitrophenol; see Picric acid. | ||||
2,4,6-Trinitrophenylmethylnitramine; see Tetryl. | ||||
2,4,6-Trinitrotoluene (TNT) | 118-96-7 | 1.5 | X | |
Triorthocresyl phosphate | 78-30-8 | 0.1 | ||
Triphenyl phosphate | 115-86-6 | 3 | ||
Turpentine | 8006-64-2 | 100 | 560 | |
Uranium (as U) | 7440-61-1 | |||
Soluble compounds | 0.05 | |||
Insoluble compounds | 0.25 | |||
Vanadium | 1314-62-1 | |||
Respirable dust (as V | (C)0.5 | |||
Fume (as V | (C)0.1 | |||
Vegetable oil mist | ||||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Vinyl benzene; see Styrene. | ||||
Vinyl chloride; see 1910.1017 | 75-01-4 | |||
Vinyl cyanide; see Acrylonitrile. | ||||
Vinyl toluene | 25013-15-4 | 100 | 480 | |
Warfarin | 81-81-2 | 0.1 | ||
Xylenes (o-, m-, p-isomers) | 1330-20-7 | 100 | 435 | |
Xylidine | 1300-73-8 | 5 | 25 | X |
Yttrium | 7440-65-5 | 1 | ||
Zinc chloride fume | 7646-85-7 | 1 | ||
Zinc oxide fume | 1314-13-2 | 5 | ||
Zinc oxide | 1314-13-2 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Zinc stearate | 557-05-1 | |||
Total dust | 15 | |||
Respirable fraction | 5 | |||
Zirconium compounds (as Zr) | 7440-67-7 | 5 |
1 The PELs are 8-hour TWAs unless otherwise noted; a (C) designation denotes a ceiling limit. They are to be determined from breathing-zone air samples.
(a) Parts of vapor or gas per million parts of contaminated air by volume at 25 °C and 760 torr.
(b) Milligrams of substance per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate.
(c) The CAS number is for information only. Enforcement is based on the substance name. For an entry covering more than one metal compound, measured as the metal, the CAS number for the metal is given—not CAS numbers for the individual compounds.
(d) The final benzene standard in 1910.1028 applies to all occupational exposures to benzene except in some circumstances the distribution and sale of fuels, sealed containers and pipelines, coke production, oil and gas drilling and production, natural gas processing, and the percentage exclusion for liquid mixtures; for the excepted subsegments, the benzene limits in Table Z-2 apply. See 1910.1028 for specific circumstances.
(e) This 8-hour TWA applies to respirable dust as measured by a vertical elutriator cotton dust sampler or equivalent instrument. The time-weighted average applies to the cottom waste processing operations of waste recycling (sorting, blending, cleaning and willowing) and garnetting. See also 1910.1043 for cotton dust limits applicable to other sectors.
(f) All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.
2 See Table Z-2.
3 See Table Z-3.
4 Varies with compound.
5 See Table Z-2 for the exposure limit for any operations or sectors where the exposure limit in § 1910.1026 is stayed or is otherwise not in effect.
6 If the exposure limit in § 1910.1026 is stayed or is otherwise not in effect, the exposure limit is a ceiling of 0.1 mg/m 3.
7 See Table Z-3 for the exposure limit for any operations or sectors where the exposure limit in § 1910.1053 is stayed or is otherwise not in effect.
8
Table Z-2
Substance | 8-hour time weighted average | Acceptable ceiling concentration | Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift | |
---|---|---|---|---|
Concentration | Maximum duration | |||
Benzene a (Z37.40-1969) | 10 ppm | 25 ppm | 50 ppm | 10 minutes. |
Beryllium and beryllium compounds (Z37.29-1970) d | 2 µg/m 3 | 5 µg/m 3 | 25 µg/m 3 | 30 minutes. |
Cadmium fume b (Z37.5-1970) | 0.1 mg/m 3 | 0.3 mg/m 3 | ||
Cadmium dust b (Z37.5-1970) | 0.2 mg/m 3 | 0.6 mg/m 3 | ||
Carbon disulfide (Z37.3-1968) | 20 ppm | 30 ppm | 100 ppm | 30 minutes. |
Carbon tetrachloride (Z37.17-1967) | 10 ppm | 25 ppm | 200 ppm | 5 min. in any 4 hrs. |
Chromic acid and chromates (Z37.7-1971) (as CrO | 1 mg/10m 3 | |||
Ethylene dibromide (Z37.31-1970) | 20 ppm | 30 ppm | 50 ppm | 5 minutes. |
Ethylene dichloride (Z37.21-1969) | 50 ppm | 100 ppm | 200 ppm | 5 min. in any 3 hrs. |
Fluoride as dust (Z37.28-1969) | 2.5 mg/m 3 | |||
Formaldehyde; see 1910.1048 | ||||
Hydrogen fluoride (Z37.28-1969) | 3 ppm | |||
Hydrogen sulfide (Z37.2-1966) | 20 ppm | 50 ppm | 10 mins. once, only if no other meas. exp. occurs. | |
Mercury (Z37.8-1971) | 1 mg/10m 3 | |||
Methyl chloride (Z37.18-1969) | 100 ppm | 200 ppm | 300 ppm | 5 mins. in any 3 hrs. |
Methylene Chloride: See § 1919.52. | ||||
Organo (alkyl) mercury (Z37.30-1969) | 0.01 mg/m 3 | 0.04 mg/m 3 | ||
Styrene (Z37.15-1969) | 100 ppm | 200 ppm | 600 ppm | 5 mins. in any 3 hrs. |
Tetrachloroethylene (Z37.22-1967) | 100 ppm | 200 ppm | 300 ppm | 5 mins. in any 3 hrs. |
Toluene (Z37.12-1967) | 200 ppm | 300 ppm | 500 ppm | 10 minutes. |
Trichloroethylene (Z37.19-1967) | 100 ppm | 200 ppm | 300 ppm | 5 mins. in any 2 hrs. |
a This standard applies to the industry segments exempt from the 1 ppm 8-hour TWA and 5 ppm STEL of the benzene standard at 1910.1028.
b This standard applies to any operations or sectors for which the Cadmium standard, 1910.1027, is stayed or otherwise not in effect.
c This standard applies to any operations or sectors for which the exposure limit in the Chromium (VI) standard, § 1910.1026, is stayed or is otherwise not in effect.
d This standard applies to any operations or sectors for which the exposure limits in the beryllium standard, § 1910.1024, are stayed or is otherwise not in effect.
Table Z-3—Mineral Dusts
Substance | mppcf a | mg/m 3 |
---|---|---|
Silica: | ||
Crystalline | ||
Quartz (Respirable) f | 250 b | 10 mg/m 3 e |
% SiO | % SiO | |
Cristobalite: Use
| ||
Tridymite: Use
| ||
Amorphous, including natural diatomaceous earth | 20 | 80 mg/m 3 |
%SiO | ||
Silicates (less than 1% crystalline silica): | ||
Mica | 20 | |
Soapstone | 20 | |
Talc (not containing asbestos) | 20 c | |
Talc (containing asbestos) Use asbestos limit | ||
Tremolite, asbestiform (see 29 CFR 1910.1001) | ||
Portland cement | 50 | |
Graphite (Natural) | 15 | |
Coal Dust: | ||
Respirable fraction less than 5% SiO | 2.4 mg/m 3 e | |
10 mg/m 3 e | ||
Respirable fraction greater than 5% SiO | _____
%SiO | |
Inert or Nuisance Dust: d | ||
Respirable fraction | 15 | 5 mg/m 3 |
Total dust | 50 | 15 mg/m 3 |
Note—Conversion factors - mppcf × 35.3 = million particles per cubic meter = particles per c.c.
a Millions of particles per cubic foot of air, based on impinger samples counted by light-field techniques.
b The percentage of crystalline silica in the formula is the amount determined from airborne samples, except in those instances in which other methods have been shown to be applicable.
c Containing less than 1% quartz; if 1% quartz or more, use quartz limit.
d All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by this limit, which is the same as the Particulates Not Otherwise Regulated (PNOR) limit in Table Z-1.
e Both concentration and percent quartz for the application of this limit are to be determined from the fraction passing a size-selector with the following characteristics:
Aerodynamic diameter (unit density sphere) | Percent passing selector |
---|---|
2 | 90 |
2.5 | 75 |
3.5 | 50 |
5.0 | 25 |
10 | 0 |
The measurements under this note refer to the use of an AEC (now NRC) instrument. The respirable fraction of coal dust is determined with an MRE; the figure corresponding to that of 2.4 mg/m 3 in the table for coal dust is 4.5 mg/m 3K.
f This standard applies to any operations or sectors for which the respirable crystalline silica standard, 1910.1053, is stayed or is otherwise not in effect.
§ 1910.1001 - Asbestos.
(a) Scope and application. (1) This section applies to all occupational exposures to asbestos in all industries covered by the Occupational Safety and Health Act, except as provided in paragraph (a)(2) and (3) of this section.
(2) This section does not apply to construction work as defined in 29 CFR 1910.12(b). (Exposure to asbestos in construction work is covered by 29 CFR 1926.1101).
(3) This section does not apply to ship repairing, shipbuilding and shipbreaking employments and related employments as defined in 29 CFR 1915.4. (Exposure to asbestos in these employments is covered by 29 CFR 1915.1001).
(b) Definitions. Asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated and/or altered.
Asbestos-containing material (ACM) means any material containing more than 1% asbestos.
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Authorized person means any person authorized by the employer and required by work duties to be present in regulated areas.
Building/facility owner is the legal entity, including a lessee, which exercises control over management and record keeping functions relating to a building and/or facility in which activities covered by this standard take place.
Certified industrial hygienist (CIH) means one certified in the practice of industrial hygiene by the American Board of Industrial Hygiene.
Director means the Director of the National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designee.
Employee exposure means that exposure to airborne asbestos that would occur if the employee were not using respiratory protective equipment.
Fiber means a particulate form of asbestos 5 micrometers or longer,with a length-to-diameter ratio of at least 3 to 1.
High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least 99.97 percent of 0.3 micrometer diameter mono-disperse particles.
Homogeneous area means an area of surfacing material or thermal system insulation that is uniform in color and texture.
Industrial hygienist means a professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards.
PACM means “presumed asbestos containing material.”
Presumed asbestos containing material means thermal system insulation and surfacing material found in buildings constructed no later than 1980. The designation of a material as “PACM” may be rebutted pursuant to paragraph (j)(8) of this section.
Regulated area means an area established by the employer to demarcate areas where airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed, the permissible exposure limits.
Surfacing ACM means surfacing material which contains more than 1% asbestos.
Surfacing material means material that is sprayed, troweled-on or otherwise applied to surfaces (such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, and other purposes).
Thermal System Insulation (TSI) means ACM applied to pipes, fittings, boilers, breeching, tanks, ducts or other structural components to prevent heat loss or gain.
Thermal System Insulation ACM means thermal system insulation which contains more than 1% asbestos.
(c) Permissible exposure limit (PELS)—(1) Time-weighted average limit (TWA). The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 0.1 fiber per cubic centimeter of air as an eight (8)-hour time-weighted average (TWA) as determined by the method prescribed in appendix A to this section, or by an equivalent method.
(2) Excursion limit. The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 1.0 fiber per cubic centimeter of air (1 f/cc) as averaged over a sampling period of thirty (30) minutes as determined by the method prescribed in appendix A to this section, or by an equivalent method.
(d) Exposure monitoring—(1) General. (i) Determinations of employee exposure shall be made from breathing zone air samples that are representative of the 8-hour TWA and 30-minute short-term exposures of each employee.
(ii) Representative 8-hour TWA employee exposures shall be determined on the basis of one or more samples representing full-shift exposures for each shift for each employee in each job classification in each work area. Representative 30-minute short-term employee exposures shall be determined on the basis of one or more samples representing 30 minute exposures associated with operations that are most likely to produce exposures above the excursion limit for each shift for each job classification in each work area.
(2) Initial monitoring. (i) Each employer who has a workplace or work operation covered by this standard, except as provided for in paragraphs (d)(2)(ii) and (d)(2)(iii) of this section, shall perform initial monitoring of employees who are, or may reasonably be expected to be exposed to airborne concentrations at or above the TWA permissible exposure limit and/or excursion limit.
(ii) Where the employer has monitored after March 31, 1992, for the TWA permissible exposure limit and/or the excursion limit, and the monitoring satisfies all other requirements of this section, the employer may rely on such earlier monitoring results to satisfy the requirements of paragraph (d)(2)(i) of this section.
(iii) Where the employer has relied upon objective data that demonstrate that asbestos is not capable of being released in airborne concentrations at or above the TWA permissible exposure limit and/or excursion limit under the expected conditions of processing, use, or handling, then no initial monitoring is required.
(3) Monitoring frequency (periodic monitoring) and patterns. After the initial determinations required by paragraph (d)(2)(i) of this section, samples shall be of such frequency and pattern as to represent with reasonable accuracy the levels of exposure of the employees. In no case shall sampling be at intervals greater than six months for employees whose exposures may reasonably be foreseen to exceed the TWA permissible exposure limit and/or excursion limit.
(4) Changes in monitoring frequency. If either the initial or the periodic monitoring required by paragraphs (d)(2) and (d)(3) of this section statistically indicates that employee exposures are below the TWA permissible exposure limit and/or excursion limit, the employer may discontinue the monitoring for those employees whose exposures are represented by such monitoring.
(5) Additional monitoring. Notwithstanding the provisions of paragraphs (d)(2)(ii) and (d)(4) of this section, the employer shall institute the exposure monitoring required under paragraphs (d)(2)(i) and (d)(3) of this section whenever there has been a change in the production, process, control equipment, personnel or work practices that may result in new or additional exposures above the TWA permissible exposure limit and/or excursion limit or when the employer has any reason to suspect that a change may result in new or additional exposures above the PEL and/or excursion limit.
(6) Method of monitoring. (i) All samples taken to satisfy the monitoring requirements of paragraph (d) of this section shall be personal samples collected following the procedures specified in appendix A.
(ii) All samples taken to satisfy the monitoring requirements of paragraph (d) of this section shall be evaluated using the OSHA Reference Method (ORM) specified in appendix A of this section, or an equivalent counting method.
(iii) If an equivalent method to the ORM is used, the employer shall ensure that the method meets the following criteria:
(A) Replicate exposure data used to establish equivalency are collected in side-by-side field and laboratory comparisons; and
(B) The comparison indicates that 90% of the samples collected in the range 0.5 to 2.0 times the permissible limit have an accuracy range of plus or minus 25 percent of the ORM results at a 95% confidence level as demonstrated by a statistically valid protocol; and
(C) The equivalent method is documented and the results of the comparison testing are maintained.
(iv) To satisfy the monitoring requirements of paragraph (d) of this section, employers must use the results of monitoring analysis performed by laboratories which have instituted quality assurance programs that include the elements as prescribed in appendix A of this section.
(7) Employee notification of monitoring results. (i) The employer must, within 15 working days after the receipt of the results of any monitoring performed under this sections, notify each affected employee of these results either individually in writing or by posting the results in an appropriate location that is accessible to affected employees.
(ii) The written notification required by paragraph (d)(7)(i) of this section shall contain the corrective action being taken by the employer to reduce employee exposure to or below the TWA and/or excursion limit, wherever monitoring results indicated that the TWA and/or excursion limit had been exceeded.
(e) Regulated Areas—(1) Establishment. The employer shall establish regulated areas wherever airborne concentrations of asbestos and/or PACM are in excess of the TWA and/or excursion limit prescribed in paragraph (c) of this section.
(2) Demarcation. Regulated areas shall be demarcated from the rest of the workplace in any manner that minimizes the number of persons who will be exposed to asbestos.
(3) Access. Access to regulated areas shall be limited to authorized persons or to persons authorized by the Act or regulations issued pursuant thereto.
(4) Provision of respirators. Each person entering a regulated area shall be supplied with and required to use a respirator, selected in accordance with paragraph (g)(2) of this section.
(5) Prohibited activities. The employer shall ensure that employees do not eat, drink, smoke, chew tobacco or gum, or apply cosmetics in the regulated areas.
(f) Methods of compliance—(1) Engineering controls and work practices. (i) The employer shall institute engineering controls and work practices to reduce and maintain employee exposure to or below the TWA and/or excursion limit prescribed in paragraph (c) of this section, except to the extent that such controls are not feasible.
(ii) Wherever the feasible engineering controls and work practices that can be instituted are not sufficient to reduce employee exposure to or below the TWA and/or excursion limit prescribed in paragraph (c) of this section, the employer shall use them to reduce employee exposure to the lowest levels achievable by these controls and shall supplement them by the use of respiratory protection that complies with the requirements of paragraph (g) of this section.
(iii) For the following operations, wherever feasible engineering controls and work practices that can be instituted are not sufficient to reduce the employee exposure to or below the TWA and/or excursion limit prescribed in paragraph (c) of this section, the employer shall use them to reduce employee exposure to or below 0.5 fiber per cubic centimeter of air (as an eight-hour time-weighted average) or 2.5 fibers/cc for 30 minutes (short-term exposure) and shall supplement them by the use of any combination of respiratory protection that complies with the requirements of paragraph (g) of this section, work practices and feasible engineering controls that will reduce employee exposure to or below the TWA and to or below the excursion limit permissible prescribed in paragraph (c) of this section: Coupling cutoff in primary asbestos cement pipe manufacturing; sanding in primary and secondary asbestos cement sheet manufacturing; grinding in primary and secondary friction product manufacturing; carding and spinning in dry textile processes; and grinding and sanding in primary plastics manufacturing.
(iv) Local exhaust ventilation. Local exhaust ventilation and dust collection systems shall be designed, constructed, installed, and maintained in accordance with good practices such as those found in the American National Standard Fundamentals Governing the Design and Operation of Local Exhaust Systems, ANSI Z9.2-1979.
(v) Particular tools. All hand-operated and power-operated tools which would produce or release fibers of asbestos, such as, but not limited to, saws, scorers, abrasive wheels, and drills, shall be provided with local exhaust ventilation systems which comply with paragraph (f)(1)(iv) of this section.
(vi) Wet methods. Insofar as practicable, asbestos shall be handled, mixed, applied, removed, cut, scored, or otherwise worked in a wet state sufficient to prevent the emission of airborne fibers so as to expose employees to levels in excess of the TWA and/or excursion limit, prescribed in paragraph (c) of this section, unless the usefulness of the product would be diminished thereby.
(vii) [Reserved]
(viii) Particular products and operations. No asbestos cement, mortar, coating, grout, plaster, or similar material containing asbestos, shall be removed from bags, cartons, or other containers in which they are shipped, without being either wetted, or enclosed, or ventilated so as to prevent effectively the release of airborne fibers.
(ix) Compressed air. Compressed air shall not be used to remove asbestos or materials containing asbestos unless the compressed air is used in conjunction with a ventilation system which effectively captures the dust cloud created by the compressed air.
(x) Flooring. Sanding of asbestos-containing flooring material is prohibited.
(2) Compliance program. (i) Where the TWA and/or excursion limit is exceeded, the employer shall establish and implement a written program to reduce employee exposure to or below the TWA and to or below the excursion limit by means of engineering and work practice controls as required by paragraph (f)(1) of this section, and by the use of respiratory protection where required or permitted under this section.
(ii) Such programs shall be reviewed and updated as necessary to reflect significant changes in the status of the employer's compliance program.
(iii) Written programs shall be submitted upon request for examination and copying to the Assistant Secretary, the Director, affected employees and designated employee representatives.
(iv) The employer shall not use employee rotation as a means of compliance with the TWA and/or excursion limit.
(3) Specific compliance methods for brake and clutch repair:
(i) Engineering controls and work practices for brake and clutch repair and service. During automotive brake and clutch inspection, disassembly, repair and assembly operations, the employer shall institute engineering controls and work practices to reduce employee exposure to materials containing asbestos using a negative pressure enclosure/HEPA vacuum system method or low pressure/wet cleaning method, which meets the detailed requirements set out in appendix F to this section. The employer may also comply using an equivalent method which follows written procedures which the employer demonstrates can achieve results equivalent to Method A in appendix F to this section. For facilities in which no more than 5 pair of brakes or 5 clutches are inspected, disassembled, repaired, or assembled per week, the method set forth in paragraph [D] of appendix F to this section may be used.
(ii) The employer may also comply by using an equivalent method which follows written procedures, which the employer demonstrates can achieve equivalent exposure reductions as do the two “preferred methods.” Such demonstration must include monitoring data conducted under workplace conditions closely resembling the process, type of asbestos containing materials, control method, work practices and environmental conditions which the equivalent method will be used, or objective data, which document that under all reasonably foreseeable conditions of brake and clutch repair applications, the method results in exposures which are equivalent to the methods set out in appendix F to this section.
(g) Respiratory protection—(1) General. For employees who use respirators required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph. Respirators must be used during:
(i) Periods necessary to install or implement feasible engineering and work-practice controls.
(ii) Work operations, such as maintenance and repair activities, for which engineering and work-practice controls are not feasible.
(iii) Work operations for which feasible engineering and work-practice controls are not yet sufficient to reduce employee exposure to or below the TWA and/or excursion limit.
(iv) Emergencies.
(2) Respirator program. (i) The employer must implement a respiratory protection program in accordance with 29 CFR 134 (b) through (d) (except (d)(1)(iii)), and (f) through (m), which covers each employee required by this section to use a respirator.
(ii) Employers must provide an employee with a tight-fitting, powered air-purifying respirator (PAPR) instead of a negative pressure respirator selected according to paragraph (g)(3) of this standard when the employee chooses to use a PAPR and it provides adequate protection to the employee.
(iii) No employee must be assigned to tasks requiring the use of respirators if, based on their most recent medical examination, the examining physician determines that the employee will be unable to function normally using a respirator, or that the safety or health of the employee or other employees will be impaired by the use of a respirator. Such employees must be assigned to another job or given the opportunity to transfer to a different position, the duties of which they can perform. If such a transfer position is available, the position must be with the same employer, in the same geographical area, and with the same seniority, status, and rate of pay the employee had just prior to such transfer.
(3) Respirator selection. Employers must:
(i) Select, and provide to employees, the appropriate respirators specified in paragraph (d)(3)(i)(A) of 29 CFR 1910.134; however, employers must not select or use filtering facepiece respirators for protection against asbestos fibers.
(ii) Provide HEPA filters for powered and non-powered air-purifying respirators.
(h) Protective work clothing and equipment—(1) Provision and use. If an employee is exposed to asbestos above the TWA and/or excursion limit, or where the possibility of eye irritation exists, the employer shall provide at no cost to the employee and ensure that the employee uses appropriate protective work clothing and equipment such as, but not limited to:
(i) Coveralls or similar full-body work clothing;
(ii) Gloves, head coverings, and foot coverings; and
(iii) Face shields, vented goggles, or other appropriate protective equipment which complies with 1910.133 of this part.
(2) Removal and storage. (i) The employer shall ensure that employees remove work clothing contaminated with asbestos only in change rooms provided in accordance with paragraph (i)(1) of this section.
(ii) The employer shall ensure that no employee takes contaminated work clothing out of the change room, except those employees authorized to do so for the purpose of laundering, maintenance, or disposal.
(iii) Contaminated work clothing shall be placed and stored in closed containers which prevent dispersion of the asbestos outside the container.
(iv) The employer shall ensure that containers of contaminated protective devices or work clothing, which are to be taken out of change rooms or the workplace for cleaning, maintenance or disposal, bear labels in accordance with paragraph (j) of this section.
(3) Cleaning and replacement. (i) The employer shall clean, launder, repair, or replace protective clothing and equipment required by this paragraph to maintain their effectiveness. The employer shall provide clean protective clothing and equipment at least weekly to each affected employee.
(ii) The employer shall prohibit the removal of asbestos from protective clothing and equipment by blowing or shaking. (iii) Laundering of contaminated clothing shall be done so as to prevent the release of airborne fibers of asbestos in excess of the permissible exposure limits prescribed in paragraph (c) of this section.
(iv) Any employer who gives contaminated clothing to another person for laundering shall inform such person of the requirement in paragraph (h)(3)(iii) of this section to effectively prevent the release of airborne fibers of asbestos in excess of the permissible exposure limits.
(v) The employer shall inform any person who launders or cleans protective clothing or equipment contaminated with asbestos of the potentially harmful effects of exposure to asbestos.
(vi) The employer shall ensure that contaminated clothing is transported in sealed impermeable bags, or other closed, impermeable containers, and labeled in accordance with paragraph (j) of this section.
(i) Hygiene facilities and practices—(1) Change rooms. (i) The employer shall provide clean change rooms for employees who work in areas where their airborne exposure to asbestos is above the TWA and/or excursion limit.
(ii) The employer shall ensure that change rooms are in accordance with 1910.141(e) of this part, and are equipped with two separate lockers or storage facilities, so separated as to prevent contamination of the employee's street clothes from his protective work clothing and equipment.
(2) Showers. (i) The employer shall ensure that employees who work in areas where their airborne exposure is above the TWA and/or excursion limit, shower at the end of the work shift.
(ii) The employer shall provide shower facilities which comply with 1910.141(d)(3) of this part.
(iii) The employer shall ensure that employees who are required to shower pursuant to paragraph (i)(2)(i) of this section do not leave the workplace wearing any clothing or equipment worn during the work shift.
(3) Lunchrooms. (i) The employer shall provide lunchroom facilities for employees who work in areas where their airborne exposure is above the TWA and/or excursion limit.
(ii) The employer shall ensure that lunchroom facilities have a positive pressure, filtered air supply, and are readily accessible to employees.
(iii) The employer shall ensure that employees who work in areas where their airborne exposure is above the PEL and/or excursion limit wash their hands and faces prior to eating, drinking or smoking.
(iv) The employer shall ensure that employees do not enter lunchroom facilities with protective work clothing or equipment unless surface asbestos fibers have been removed from the clothing or equipment by vacuuming or other method that removes dust without causing the asbestos to become airborne.
(4) Smoking in work areas. The employer shall ensure that employees do not smoke in work areas where they are occupationally exposed to asbestos because of activities in that work area.
(j) Communication of hazards to employees—Introduction. This section applies to the communication of information concerning asbestos hazards in general industry to facilitate compliance with this standard. Asbestos exposure in general industry occurs in a wide variety of industrial and commercial settings. Employees who manufacture asbestos-containing products may be exposed to asbestos fibers. Employees who repair and replace automotive brakes and clutches may be exposed to asbestos fibers. In addition, employees engaged in housekeeping activities in industrial facilities with asbestos product manufacturing operations, and in public and commercial buildings with installed asbestos containing materials may be exposed to asbestos fibers. Most of these workers are covered by this general industry standard, with the exception of state or local governmental employees in non-state plan states. It should be noted that employees who perform housekeeping activities during and after construction activities are covered by the asbestos construction standard, 29 CFR 1926.1101, formerly 1926.58. However, housekeeping employees, regardless of industry designation, should know whether building components they maintain may expose them to asbestos. The same hazard communication provisions will protect employees who perform housekeeping operations in all three asbestos standards; general industry, construction, and shipyard employment. As noted in the construction standard, building owners are often the only and/or best source of information concerning the presence of previously installed asbestos containing building materials. Therefore they, along with employers of potentially exposed employees, are assigned specific information conveying and retention duties under this section.
(1) Hazard communication—general. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for asbestos.
(ii) In classifying the hazards of asbestos at least the following hazards are to be addressed: Cancer and lung effects.
(iii) Employers shall include asbestos in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of asbestos and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (j)(7) of this section.
(2) Installed Asbestos Containing Material. Employers and building owners are required to treat installed TSI and sprayed on and troweled-on surfacing materials as ACM in buildings constructed no later than 1980 for purposes of this standard. These materials are designated “presumed ACM or PACM”, and are defined in paragraph (b) of this section. Asphalt and vinyl flooring material installed no later than 1980 also must be treated as asbestos-containing. The employer or building owner may demonstrate that PACM and flooring material do not contain asbestos by complying with paragraph (j)(8)(iii) of this section.
(3) Duties of employers and building and facility owners. (i) Building and facility owners shall determine the presence, location, and quantity of ACM and/or PACM at the work site. Employers and building and facility owners shall exercise due diligence in complying with these requirements to inform employers and employees about the presence and location of ACM and PACM.
(ii) Building and facility owners shall maintain records of all information required to be provided pursuant to this section and/or otherwise known to the building owner concerning the presence, location and quantity of ACM and PACM in the building/facility. Such records shall be kept for the duration of ownership and shall be transferred to successive owners.
(iii) Building and facility owners shall inform employers of employees, and employers shall inform employees who will perform housekeeping activities in areas which contain ACM and/or PACM of the presence and location of ACM and/or PACM in such areas which may be contacted during such activities.
(4) Warning signs—(i) Posting. Warning signs shall be provided and displayed at each regulated area. In addition, warning signs shall be posted at all approaches to regulated areas so that an employee may read the signs and take necessary protective steps before entering the area.
(ii) Sign specifications:
(A) The warning signs required by paragraph (j)(4)(i) of this section shall bear the following legend:
(B) In addition, where the use of respirators and protective clothing is required in the regulated area under this section, the warning signs shall include the following:
(C) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (j)(4)(ii)(A) of this section:
(D) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (j)(4)(ii)(B) of this section:
(iii) The employer shall ensure that employees working in and contiguous to regulated areas comprehend the warning signs required to be posted by paragraph (j)(4)(i) of this section. Means to ensure employee comprehension may include the use of foreign languages, pictographs and graphics.
(iv) At the entrance to mechanical rooms/areas in which employees reasonably can be expected to enter and which contain ACM and/or PACM, the building owner shall post signs which identify the material which is present, its location, and appropriate work practices which, if followed, will ensure that ACM and/or PACM will not be disturbed. The employer shall ensure, to the extent feasible, that employees who come in contact with these signs can comprehend them. Means to ensure employee comprehension may include the use of foreign languages, pictographs, graphics, and awareness training.
(5) Warning labels—(i) Labeling. Labels shall be affixed to all raw materials, mixtures, scrap, waste, debris, and other products containing asbestos fibers, or to their containers. When a building owner or employer identifies previously installed ACM and/or PACM, labels or signs shall be affixed or posted so that employees will be notified of what materials contain ACM and/or PACM. The employer shall attach such labels in areas where they will clearly be noticed by employees who are likely to be exposed, such as at the entrance to mechanical room/areas. Signs required by paragraph (j) of this section may be posted in lieu of labels so long as they contain the information required for labeling.
(ii) Label specifications. In addition to the requirements of paragraph (j)(1), the employer shall ensure that labels of bags or containers of protective clothing and equipment, scrap, waste, and debris containing asbestos fibers include the following information:
(iii) Prior to June 1, 2015, employers may include the following information on raw materials, mixtures or labels of bags or containers of protective clothing and equipment, scrap, waste, and debris containing asbestos fibers in lieu of the labeling requirements in paragraphs (j)(1)(i) and (j)(5)(ii) of this section:
(6) The provisions for labels and for safety data sheets required by paragraph (j) of this section do not apply where:
(i) Asbestos fibers have been modified by a bonding agent, coating, binder, or other material provided that the manufacturer can demonstrate that during any reasonably foreseeable use, handling, storage, disposal, processing, or transportation, no airborne concentrations of fibers of asbestos in excess of the TWA permissible exposure level and/or excursion limit will be released or
(ii) Asbestos is present in a product in concentrations less than 1.0%.
(7) Employee information and training. (i) The employer shall train each employee who is exposed to airborne concentrations of asbestos at or above the PEL and/or excursion limit in accordance with the requirements of this section. The employer shall institute a training program and ensure employee participation in the program.
(ii) Training shall be provided prior to or at the time of initial assignment and at least annually thereafter.
(iii) The training program shall be conducted in a manner which the employee is able to understand. The employer shall ensure that each employee is informed of the following:
(A) The health effects associated with asbestos exposure;
(B) The relationship between smoking and exposure to asbestos producing lung cancer:
(C) The quantity, location, manner of use, release, and storage of asbestos, and the specific nature of operations which could result in exposure to asbestos;
(D) The engineering controls and work practices associated with the employee's job assignment;
(E) The specific procedures implemented to protect employees from exposure to asbestos, such as appropriate work practices, emergency and clean-up procedures, and personal protective equipment to be used;
(F) The purpose, proper use, and limitations of respirators and protective clothing, if appropriate;
(G) The purpose and a description of the medical surveillance program required by paragraph (l) of this section;
(H) The content of this standard, including appendices.
(I) The names, addresses and phone numbers of public health organizations which provide information, materials, and/or conduct programs concerning smoking cessation. The employer may distribute the list of such organizations contained in appendix I to this section, to comply with this requirement.
(J) The requirements for posting signs and affixing labels and the meaning of the required legends for such signs and labels.
(iv) The employer shall also provide, at no cost to employees who perform housekeeping operations in an area which contains ACM or PACM, an asbestos awareness training course, which shall at a minimum contain the following elements: health effects of asbestos, locations of ACM and PACM in the building/facility, recognition of ACM and PACM damage and deterioration, requirements in this standard relating to housekeeping, and proper response to fiber release episodes, to all employees who perform housekeeping work in areas where ACM and/or PACM is present. Each such employee shall be so trained at least once a year.
(v) Access to information and training materials.
(A) The employer shall make a copy of this standard and its appendices readily available without cost to all affected employees.
(B) The employer shall provide, upon request, all materials relating to the employee information and training program to the Assistant Secretary and the training program to the Assistant Secretary and the Director.
(C) The employer shall inform all employees concerning the availability of self-help smoking cessation program material. Upon employee request, the employer shall distribute such material, consisting of NIH Publication No. 89-1647, or equivalent self-help material, which is approved or published by a public health organization listed in appendix I to this section.
(8) Criteria to rebut the designation of installed material as PACM. (i) At any time, an employer and/or building owner may demonstrate, for purposes of this standard, that PACM does not contain asbestos. Building owners and/or employers are not required to communicate information about the presence of building material for which such a demonstration pursuant to the requirements of paragraph (j)(8)(ii) of this section has been made. However, in all such cases, the information, data and analysis supporting the determination that PACM does not contain asbestos, shall be retained pursuant to paragraph (m) of this section.
(ii) An employer or owner may demonstrate that PACM does not contain asbestos by the following:
(A) Having a completed inspection conducted pursuant to the requirements of AHERA (40 CFR 763, subpart E) which demonstrates that no ACM is present in the material; or
(B) Performing tests of the material containing PACM which demonstrate that no ACM is present in the material. Such tests shall include analysis of bulk samples collected in the manner described in 40 CFR 763.86. The tests, evaluation and sample collection shall be conducted by an accredited inspector or by a CIH. Analysis of samples shall be performed by persons or laboratories with proficiency demonstrated by current successful participation in a nationally recognized testing program such as the National Voluntary Laboratory Accreditation Program (NVLAP) or the National Institute for Standards and Technology (NIST) or the Round Robin for bulk samples administered by the American Industrial Hygiene Association (AIHA) or an equivalent nationally-recognized round robin testing program.
(iii) The employer and/or building owner may demonstrate that flooring material including associated mastic and backing does not contain asbestos, by a determination of an industrial hygienist based upon recognized analytical techniques showing that the material is not ACM.
(k) Housekeeping. (1) All surfaces shall be maintained as free as practicable of ACM waste and debris and accompanying dust.
(2) All spills and sudden releases of material containing asbestos shall be cleaned up as soon as possible.
(3) Surfaces contaminated with asbestos may not be cleaned by the use of compressed air.
(4) Vacuuming. HEPA-filtered vacuuming equipment shall be used for vacuuming asbestos containing waste and debris. The equipment shall be used and emptied in a manner which minimizes the reentry of asbestos into the workplace.
(5) Shoveling, dry sweeping and dry clean-up of asbestos may be used only where vacuuming and/or wet cleaning are not feasible.
(6) Waste disposal. Waste, scrap, debris, bags, containers, equipment, and clothing contaminated with asbestos consigned for disposal, shall be collected, recycled and disposed of in sealed impermeable bags, or other closed, impermeable containers.
(7) Care of asbestos-containing flooring material.
(i) Sanding of asbestos-containing floor material is prohibited.
(ii) Stripping of finishes shall be conducted using low abrasion pads at speeds lower than 300 rpm and wet methods.
(iii) Burnishing or dry buffing may be performed only on asbestos-containing flooring which has sufficient finish so that the pad cannot contact the asbestos-containing material.
(8) Waste and debris and accompanying dust in an area containing accessible ACM and/or PACM or visibly deteriorated ACM, shall not be dusted or swept dry, or vacuumed without using a HEPA filter.
(l) Medical surveillance—(1) General—(i) Employees covered. The employer shall institute a medical surveillance program for all employees who are or will be exposed to airborne concentrations of fibers of asbestos at or above the TWA and/or excursion limit.
(ii) Examination by a physician. (A) The employer shall ensure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee and at a reasonable time and place.
(B) Persons other than licensed physicians, who administer the pulmonary function testing required by this section, shall complete a training course in spirometry sponsored by an appropriate academic or professional institution.
(2) Pre-placement examinations. (i) Before an employee is assigned to an occupation exposed to airborne concentrations of asbestos fibers at or above the TWA and/or excursion limit, a pre-placement medical examination shall be provided or made available by the employer.
(ii) Such examination shall include, as a minimum, a medical and work history; a complete physical examination of all systems with emphasis on the respiratory system, the cardiovascular system and digestive tract; completion of the respiratory disease standardized questionnaire in appendix D to this section, part 1; a 14- by 17-inch or other reasonably-sized standard film or digital posterior-anterior chest X-ray; pulmonary function tests to include forced vital capacity (FVC) and forced expiratory volume at 1 second (FEV
(3) Periodic examinations. (i) Periodic medical examinations shall be made available annually.
(ii) The scope of the medical examination shall be in conformance with the protocol established in paragraph (l)(2)(ii) of this section, except that the frequency of chest X-rays shall be conducted in accordance with Table 1 to this section, and the abbreviated standardized questionnaire contained in part 2 of appendix D to this section shall be administered to the employee.
Table 1 to § 1910.1001—Frequency of Chest X-ray
Years since first exposure | Age of employee | ||
---|---|---|---|
15 to 35 | 35 + to 45 | 45 + | |
0 to 10 | Every 5 years | Every 5 years | Every 5 years. |
10 + | Every 5 years | Every 2 years | Every 1 year. |
(4) Termination of employment examinations. (i) The employer shall provide, or make available, a termination of employment medical examination for any employee who has been exposed to airborne concentrations of fibers of asbestos at or above the TWA and/or excursion limit.
(ii) The medical examination shall be in accordance with the requirements of the periodic examinations stipulated in paragraph (l)(3) of this section, and shall be given within 30 calendar days before or after the date of termination of employment.
(5) Recent examinations. No medical examination is required of any employee, if adequate records show that the employee has been examined in accordance with any of paragraphs ((l)(2) through (l)(4)) of this section within the past 1 year period. A pre- employment medical examination which was required as a condition of employment by the employer, may not be used by that employer to meet the requirements of this paragraph, unless the cost of such examination is borne by the employer.
(6) Information provided to the physician. The employer shall provide the following information to the examining physician:
(i) A copy of this standard and Appendices D and E.
(ii) A description of the affected employee's duties as they relate to the employee's exposure.
(iii) The employee's representative exposure level or anticipated exposure level.
(iv) A description of any personal protective and respiratory equipment used or to be used.
(v) Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician.
(7) Physician's written opinion. (i) The employer shall obtain a written opinion from the examining physician. This written opinion shall contain the results of the medical examination and shall include:
(A) The physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of material health impairment from exposure to asbestos;
(B) Any recommended limitations on the employee or upon the use of personal protective equipment such as clothing or respirators;
(C) A statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions resulting from asbestos exposure that require further explanation or treatment; and
(D) A statement that the employee has been informed by the physician of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure.
(ii) The employer shall instruct the physician not to reveal in the written opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to asbestos.
(iii) The employer shall provide a copy of the physician's written opinion to the affected employee within 30 days from its receipt.
(m) Recordkeeping—(1) Exposure measurements.
The employer may utilize the services of competent organizations such as industry trade associations and employee associations to maintain the records required by this section.
(i) The employer shall keep an accurate record of all measurements taken to monitor employee exposure to asbestos as prescribed in paragraph (d) of this section.
(ii) This record shall include at least the following information:
(A) The date of measurement;
(B) The operation involving exposure to asbestos which is being monitored;
(C) Sampling and analytical methods used and evidence of their accuracy;
(D) Number, duration, and results of samples taken;
(E) Type of respiratory protective devices worn, if any; and
(F) Name and exposure of the employees whose exposure are represented.
(iii) The employer shall maintain this record for at least thirty (30) years, in accordance with 29 CFR 1910.20.
(2) Objective data for exempted operations. (i) Where the processing, use, or handling of products made from or containing asbestos is exempted from other requirements of this section under paragraph (d)(2)(iii) of this section, the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption.
(ii) The record shall include at least the following:
(A) The product qualifying for exemption;
(B) The source of the objective data;
(C) The testing protocol, results of testing, and/or analysis of the material for the release of asbestos;
(D) A description of the operation exempted and how the data support the exemption; and
(E) Other data relevant to the operations, materials, processing, or employee exposures covered by the exemption.
(iii) The employer shall maintain this record for the duration of the employer's reliance upon such objective data.
(3) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance by paragraph (l)(1)(i) of this section, in accordance with 29 CFR 1910.1020.
(ii) The record shall include at least the following information:
(A) The name of the employee;
(B) Physician's written opinions;
(C) Any employee medical complaints related to exposure to asbestos; and
(D) A copy of the information provided to the physician as required by paragraph (l)(6) of this section.
(iii) The employer shall ensure that this record is maintained for the duration of employment plus thirty (30) years, in accordance with 29 CFR 1910.1020.
(4) Training. The employer shall maintain all employee training records for one (1) year beyond the last date of employment of that employee.
(5) Availability. (i) The employer, upon written request, shall make all records required to be maintained by this section available to the Assistant Secretary and the Director for examination and copying.
(ii) The employer, upon request shall make any exposure records required by paragraph (m)(1) of this section available for examination and copying to affected employees, former employees, designated representatives and the Assistant Secretary, in accordance with 29 CFR 1910.1020 (a) through (e) and (g) through (i).
(iii) The employer, upon request, shall make employee medical records required by paragraph (m)(3) of this section available for examination and copying to the subject employee, to anyone having the specific written consent of the subject employee, and the Assistant Secretary, in accordance with 29 CFR 1910.1020.
(6) Transfer of records. The employer shall comply with the requirements concerning transfer of records set forth in 29 CFR 1910.1020(h).
(n) Observation of monitoring—(1) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to asbestos conducted in accordance with paragraph (d) of this section.
(2) Observation procedures. When observation of the monitoring of employee exposure to asbestos requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures.
(o) Appendices. (1) Appendices A, C, D, E, and F to this section are incorporated as part of this section and the contents of these Appendices are mandatory.
(2) Appendices B, G, H, I, and J to this section are informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations.
This mandatory appendix specifies the procedure for analyzing air samples for asbestos and specifies quality control procedures that must be implemented by laboratories performing the analysis. The sampling and analytical methods described below represent the elements of the available monitoring methods (such as appendix B of their regulation, the most current version of the OSHA method ID-160, or the most current version of the NIOSH Method 7400). All employers who are required to conduct air monitoring under paragraph (d) of the standard are required to utilize analytical laboratories that use this procedure, or an equivalent method, for collecting and analyzing samples.
1. The sampling medium for air samples shall be mixed cellulose ester filter membranes. These shall be designated by the manufacturer as suitable for asbestos counting. See below for rejection of blanks.
2. The preferred collection device shall be the 25-mm diameter cassette with an open-faced 50-mm electrically conductive extension cowl. The 37-mm cassette may be used if necessary but only if written justification for the need to use the 37-mm filter cassette accompanies the sample results in the employee's exposure monitoring record. Do not reuse or reload cassettes for asbestos sample collection.
3. An air flow rate between 0.5 liter/min and 2.5 liters/min shall be selected for the 25-mm cassette. If the 37-mm cassette is used, an air flow rate between 1 liter/min and 2.5 liters/min shall be selected.
4. Where possible, a sufficient air volume for each air sample shall be collected to yield between 100 and 1,300 fibers per square millimeter on the membrane filter. If a filter darkens in appearance or if loose dust is seen on the filter, a second sample shall be started.
5. Ship the samples in a rigid container with sufficient packing material to prevent dislodging the collected fibers. Packing material that has a high electrostatic charge on its surface (e.g., expanded polystyrene) cannot be used because such material can cause loss of fibers to the sides of the cassette.
6. Calibrate each personal sampling pump before and after use with a representative filter cassette installed between the pump and the calibration devices.
7. Personal samples shall be taken in the “breathing zone” of the employee (i.e., attached to or near the collar or lapel near the worker's face).
8. Fiber counts shall be made by positive phase contrast using a microscope with an 8 to 10× eyepiece and a 40 to 45× objective for a total magnification of approximately 400× and a numerical aperture of 0.65 to 0.75. The microscope shall also be fitted with a green or blue filter.
9. The microscope shall be fitted with a Walton-Beckett eyepiece graticule calibrated for a field diameter of 100 micrometers (±2 micrometers).
10. The phase-shift detection limit of the microscope shall be about 3 degrees measured using the HSE phase shift test slide as outlined below.
a. Place the test slide on the microscope stage and center it under the phase objective.
b. Bring the blocks of grooved lines into focus.
The slide consists of seven sets of grooved lines (ca. 20 grooves to each block) in descending order of visibility from sets 1 to 7, seven being the least visible. The requirements for asbestos counting are that the microscope optics must resolve the grooved lines in set 3 completely, although they may appear somewhat faint, and that the grooved lines in sets 6 and 7 must be invisible. Sets 4 and 5 must be at least partially visible but may vary slightly in visibility between microscopes. A microscope that fails to meet these requirements has either too low or too high a resolution to be used for asbestos counting.
c. If the image deteriorates, clean and adjust the microscope optics. If the problem persists, consult the microscope manufacturer.
11. Each set of samples taken will include 10% field blanks or a minimum of 2 field blanks. These blanks must come from the same lot as the filters used for sample collection. The field blank results shall be averaged and subtracted from the analytical results before reporting. A set consists of any sample or group of samples for which an evaluation for this standard must be made. Any samples represented by a field blank having a fiber count in excess of the detection limit of the method being used shall be rejected.
12. The samples shall be mounted by the acetone/triacetin method or a method with an equivalent index of refraction and similar clarity.
13. Observe the following counting rules.
a. Count only fibers equal to or longer than 5 micrometers. Measure the length of curved fibers along the curve.
b. In the absence of other information, count all particles as asbesto that have a length-to-width ratio (aspect ratio) of 3:1 or greater.
c. Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle, shall receive the count of one half (
d. Count bundles of fibers as one fiber unless individual fibers can be identified by observing both ends of an individual fiber.
e. Count enough graticule fields to yield 100 fibers. Count a minimum of 20 fields; stop counting at 100 fields regardless of fiber count.
14. Blind recounts shall be conducted at the rate of 10 percent.
1. Intralaboratory program. Each laboratory and/or each company with more than one microscopist counting slides shall establish a statistically designed quality assurance program involving blind recounts and comparisons between microscopists to monitor the variability of counting by each microscopist and between microscopists. In a company with more than one laboratory, the program shall include all laboratories and shall also evaluate the laboratory-to-laboratory variability.
2.a. Interlaboratory program. Each laboratory analyzing asbestos samples for compliance determination shall implement an interlaboratory quality assurance program that as a minimum includes participation of at least two other independent laboratories. Each laboratory shall participate in round robin testing at least once every 6 months with at least all the other laboratories in its interlaboratory quality assurance group. Each laboratory shall submit slides typical of its own work load for use in this program. The round robin shall be designed and results analyzed using appropriate statistical methodology.
2.b. All laboratories should also participate in a national sample testing scheme such as the Proficiency Analytical Testing Program (PAT), or the Asbestos Registry sponsored by the American Industrial Hygiene Association (AIHA).
3. All individuals performing asbestos analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos dust or an equalivalent course.
4. When the use of different microscopes contributes to differences between counters and laboratories, the effect of the different microscope shall be evaluated and the microscope shall be replaced, as necessary.
5. Current results of these quality assurance programs shall be posted in each laboratory to keep the microscopists informed.
Matrix Air: | |
OSHA Permissible Exposure Limits: | |
Time Weighted Average | 0.1 fiber/cc |
Excursion Level (30 minutes) | 1.0 fiber/cc |
Collection Procedure: | |
A known volume of air is drawn through a 25-mm diameter cassette containing a mixed-cellulose ester filter. The cassette must be equipped with an electrically conductive 50-mm extension cowl. The sampling time and rate are chosen to give a fiber density of between 100 to 1,300 fibers/mm 2 on the filter. | |
Recommended Sampling Rate | 0.5 to 5.0 liters/minute (L/min) |
Recommended Air Volumes: | |
Minimum | 25 L |
Maximum | 2,400 L |
Analytical Procedure: A portion of the sample filter is cleared and prepared for asbestos fiber counting by Phase Contrast Microscopy (PCM) at 400X.
Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted.
This method describes the collection of airborne asbestos fibers using calibrated sampling pumps with mixed-cellulose ester (MCE) filters and analysis by phase contrast microscopy (PCM). Some terms used are unique to this method and are defined below:
Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, crocidolite, amosite (cummingtonite-grunerite asbestos), tremolite asbestos, actinolite asbestos, anthophyllite asbestos, and any of these minerals that have been chemically treated and/or altered. The precise chemical formulation of each species will vary with the location from which it was mined. Nominal compositions are listed:
Chrysotile | Mg |
Crocidolite | Na |
Amosite | (Mg,Fe) |
Tremolite-actinolite | Ca |
Anthophyllite | (Mg,Fe) |
Asbestos Fiber: A fiber of asbestos which meets the criteria specified below for a fiber.
Aspect Ratio: The ratio of the length of a fiber to it's diameter (e.g. 3:1, 5:1 aspect ratios).
Cleavage Fragments: Mineral particles formed by comminution of minerals, especially those characterized by parallel sides and a moderate aspect ratio (usually less than 20:1).
Detection Limit: The number of fibers necessary to be 95% certain that the result is greater than zero.
Differential Counting: The term applied to the practice of excluding certain kinds of fibers from the fiber count because they do not appear to be asbestos.
Fiber: A particle that is 5 µm or longer, with a length-to-width ratio of 3 to 1 or longer.
Field: The area within the graticule circle that is superimposed on the microscope image.
Set: The samples which are taken, submitted to the laboratory, analyzed, and for which, interim or final result reports are generated.
Tremolite, Anthophyllite, and Actinolite: The non-asbestos form of these minerals which meet the definition of a fiber. It includes any of these minerals that have been chemically treated and/or altered.
Walton-Beckett Graticule: An eyepiece graticule specifically designed for asbestos fiber counting. It consists of a circle with a projected diameter of 100 2 µm (area of about 0.00785 mm
Early surveys to determine asbestos exposures were conducted using impinger counts of total dust with the counts expressed as million particles per cubic foot. The British Asbestos Research Council recommended filter membrane counting in 1969. In July 1969, the Bureau of Occupational Safety and Health published a filter membrane method for counting asbestos fibers in the United States. This method was refined by NIOSH and published as P CAM 239. On May 29, 1971, OSHA specified filter membrane sampling with phase contrast counting for evaluation of asbestos exposures at work sites in the United States. The use of this technique was again required by OSHA in 1986. Phase contrast microscopy has continued to be the method of choice for the measurement of occupational exposure to asbestos.
Air is drawn through a MCE filter to capture airborne asbestos fibers. A wedge shaped portion of the filter is removed, placed on a glass microscope slide and made transparent. A measured area (field) is viewed by PCM. All the fibers meeting defined criteria for asbestos are counted and considered a measure of the airborne asbestos concentration.
There are four main advantages of PCM over other methods:
(1) The technique is specific for fibers. Phase contrast is a fiber counting technique which excludes non-fibrous particles from the analysis.
(2) The technique is inexpensive and does not require specialized knowledge to carry out the analysis for total fiber counts.
(3) The analysis is quick and can be performed on-site for rapid determination of air concentrations of asbestos fibers.
(4) The technique has continuity with historical epidemiological studies so that estimates of expected disease can be inferred from long-term determinations of asbestos exposures.
The main disadvantage of PCM is that it does not positively identify asbestos fibers. Other fibers which are not asbestos may be included in the count unless differential counting is performed. This requires a great deal of experience to adequately differentiate asbestos from non-asbestos fibers. Positive identification of asbestos must be performed by polarized light or electron microscopy techniques. A further disadvantage of PCM is that the smallest visible fibers are about 0.2 µm in diameter while the finest asbestos fibers may be as small as 0.02 µm in diameter. For some exposures, substantially more fibers may be present than are actually counted.
Asbestos is used by the construction industry in such products as shingles, floor tiles, asbestos cement, roofing felts, insulation and acoustical products. Non-construction uses include brakes, clutch facings, paper, paints, plastics, and fabrics. One of the most significant exposures in the workplace is the removal and encapsulation of asbestos in schools, public buildings, and homes. Many workers have the potential to be exposed to asbestos during these operations.
About 95% of the asbestos in commercial use in the United States is chrysotile. Crocidolite and amosite make up most of the remainder. Anthophyllite and tremolite or actinolite are likely to be encountered as contaminants in various industrial products.
Asbestos fiber possesses a high tensile strength along its axis, is chemically inert, non-combustible, and heat resistant. It has a high electrical resistance and good sound absorbing properties. It can be weaved into cables, fabrics or other textiles, and also matted into asbestos papers, felts, or mats.
2.1. The ideal counting range on the filter is 100 to 1,300 fibers/mm
2.2. The detection limit for this method is 4.0 fibers per 100 fields or 5.5 fibers/mm
This value was compared with CV vs. count curves. The count at which CV = 0.61 for Leidel-Busch counting statistics or for an OSHA Salt Lake Technical Center (OSHA-SLTC) CV curve (see appendix A for further information) was 4.4 fibers or 3.9 fibers per 100 fields, respectively. Although a lower detection limit of 4 fibers per 100 fields is supported by the OSHA-SLTC data, both data sets support the 4.5 fibers per 100 fields value.
Precision is dependent upon the total number of fibers counted and the uniformity of the fiber distribution on the filter. A general rule is to count at least 20 and not more than 100 fields. The count is discontinued when 100 fibers are counted, provided that 20 fields have already been counted. Counting more than 100 fibers results in only a small gain in precision. As the total count drops below 10 fibers, an accelerated loss of precision is noted.
At this time, there is no known method to determine the absolute accuracy of the asbestos analysis. Results of samples prepared through the Proficiency Analytical Testing (PAT) Program and analyzed by the OSHA-SLTC showed no significant bias when compared to PAT reference values. The PAT samples were analyzed from 1987 to 1989 (N = 36) and the concentration range was from 120 to 1,300 fibers/mm
Fibrous substances, if present, may interfere with asbestos analysis.
Some common fibers are:
The use of electron microscopy or optical tests such as polarized light, and dispersion staining may be used to differentiate these materials from asbestos when necessary.
5.1.1. Sample assembly (The assembly is shown in Figure 3). Conductive filter holder consisting of a 25-mm diameter, 3-piece cassette having a 50-mm long electrically conductive extension cowl. Backup pad, 25-mm, cellulose. Membrane filter, mixed-cellulose ester (MCE), 25-mm, plain, white, 0.4 to 1.2-µm pore size.
(a) Do not re-use cassettes.
(b) Fully conductive cassettes are required to reduce fiber loss to the sides of the cassette due to electrostatic attraction.
(c) Purchase filters which have been selected by the manufacturer for asbestos counting or analyze representative filters for fiber background before use. Discard the filter lot if more than 4 fibers/100 fields are found.
(d) To decrease the possibility of contamination, the sampling system (filter-backup pad-cassette) for asbestos is usually preassembled by the manufacturer.
(e) Other cassettes, such as the Bell-mouth, may be used within the limits of their validation.
5.1.2. Gel bands for sealing cassettes.
5.1.3. Sampling pump.
Each pump must be a battery operated, self-contained unit small enough to be placed on the monitored employee and not interfere with the work being performed. The pump must be capable of sampling at the collection rate for the required sampling time.
5.1.4. Flexible tubing, 6-mm bore.
5.1.5. Pump calibration.
Stopwatch and bubble tube/burette or electronic meter.
5.2. Sampling Procedure
5.2.1. Seal the point where the base and cowl of each cassette meet with a gel band or tape.
5.2.2. Charge the pumps completely before beginning.
5.2.3. Connect each pump to a calibration cassette with an appropriate length of 6-mm bore plastic tubing. Do not use luer connectors—the type of cassette specified above has built-in adapters.
5.2.4. Select an appropriate flow rate for the situation being monitored. The sampling flow rate must be between 0.5 and 5.0 L/min for personal sampling and is commonly set between 1 and 2 L/min. Always choose a flow rate that will not produce overloaded filters.
5.2.5. Calibrate each sampling pump before and after sampling with a calibration cassette in-line (Note: This calibration cassette should be from the same lot of cassettes used for sampling). Use a primary standard (e.g. bubble burette) to calibrate each pump. If possible, calibrate at the sampling site.
If sampling site calibration is not possible, environmental influences may affect the flow rate. The extent is dependent on the type of pump used. Consult with the pump manufacturer to determine dependence on environmental influences. If the pump is affected by temperature and pressure changes, correct the flow rate using the formula shown in the section “Sampling Pump Flow Rate Corrections” at the end of this appendix.
5.2.6. Connect each pump to the base of each sampling cassette with flexible tubing. Remove the end cap of each cassette and take each air sample open face. Assure that each sample cassette is held open side down in the employee's breathing zone during sampling. The distance from the nose/mouth of the employee to the cassette should be about 10 cm. Secure the cassette on the collar or lapel of the employee using spring clips or other similar devices.
5.2.7. A suggested minimum air volume when sampling to determine TWA compliance is 25 L. For Excursion Limit (30 min sampling time) evaluations, a minimum air volume of 48 L is recommended.
5.2.8. The most significant problem when sampling for asbestos is overloading the filter with non-asbestos dust. Suggested maximum air sample volumes for specific environments are:
Environment | Air vol. (L) |
---|---|
Asbestos removal operations (visible dust) | 100 |
Asbestos removal operations (little dust) | 240 |
Office environments | 400
to 2,400 |
Caution: Do not overload the filter with dust. High levels of non-fibrous dust particles may obscure fibers on the filter and lower the count or make counting impossible. If more than about 25 to 30% of the field area is obscured with dust, the result may be biased low. Smaller air volumes may be necessary when there is excessive non-asbestos dust in the air.
While sampling, observe the filter with a small flashlight. If there is a visible layer of dust on the filter, stop sampling, remove and seal the cassette, and replace with a new sampling assembly. The total dust loading should not exceed 1 mg.
5.2.9. Blank samples are used to determine if any contamination has occurred during sample handling. Prepare two blanks for the first 1 to 20 samples. For sets containing greater than 20 samples, prepare blanks as 10% of the samples. Handle blank samples in the same manner as air samples with one exception: Do not draw any air through the blank samples. Open the blank cassette in the place where the sample cassettes are mounted on the employee. Hold it open for about 30 seconds. Close and seal the cassette appropriately. Store blanks for shipment with the sample cassettes.
5.2.10. Immediately after sampling, close and seal each cassette with the base and plastic plugs. Do not touch or puncture the filter membrane as this will invalidate the analysis.
5.2.11 Attach and secure a sample seal around each sample cassette in such a way as to assure that the end cap and base plugs cannot be removed without destroying the seal. Tape the ends of the seal together since the seal is not long enough to be wrapped end-to-end. Also wrap tape around the cassette at each joint to keep the seal secure.
5.3.1. Send the samples to the laboratory with paperwork requesting asbestos analysis. List any known fibrous interferences present during sampling on the paperwork. Also, note the workplace operation(s) sampled.
5.3.2. Secure and handle the samples in such that they will not rattle during shipment nor be exposed to static electricity. Do not ship samples in expanded polystyrene peanuts, vermiculite, paper shreds, or excelsior. Tape sample cassettes to sheet bubbles and place in a container that will cushion the samples in such a manner that they will not rattle.
5.3.3. To avoid the possibility of sample contamination, always ship bulk samples in separate mailing containers.
6.1.1. Acetone is extremely flammable and precautions must be taken not to ignite it. Avoid using large containers or quantities of acetone. Transfer the solvent in a ventilated laboratory hood. Do not use acetone near any open flame. For generation of acetone vapor, use a spark free heat source.
6.1.2. Any asbestos spills should be cleaned up immediately to prevent dispersal of fibers. Prudence should be exercised to avoid contamination of laboratory facilities or exposure of personnel to asbestos. Asbestos spills should be cleaned up with wet methods and/or a High Efficiency Particulate-Air (HEPA) filtered vacuum.
Caution: Do not use a vacuum without a HEPA filter—It will disperse fine asbestos fibers in the air.
6.2.1. Phase contrast microscope with binocular or trinocular head.
6.2.2. Widefield or Huygenian 10X eyepieces (
6.2.3. Kohler illumination (if possible) with green or blue filter.
6.2.4. Walton-Beckett Graticule, type G-22 with 100 ±2 µm projected diameter.
6.2.5. Mechanical stage.
A rotating mechanical stage is convenient for use with polarized light.
6.2.6. Phase telescope.
6.2.7. Stage micrometer with 0.01-mm subdivisions.
6.2.8. Phase-shift test slide, mark II (Available from PTR optics Ltd., and also McCrone).
6.2.9. Precleaned glass slides, 25 mm × 75 mm. One end can be frosted for convenience in writing sample numbers, etc., or paste-on labels can be used.
6.2.10. Cover glass #1
6.2.11. Scalpel (#10, curved blade).
6.2.12. Fine tipped forceps.
6.2.13. Aluminum block for clearing filter (see appendix D and Figure 4).
6.2.14. Automatic adjustable pipette, 100- to 500-µL.
6.2.15. Micropipette, 5 µL.
6.3.1. Acetone (HPLC grade).
6.3.2. Triacetin (glycerol triacetate).
6.3.3. Lacquer or nail polish.
A way to prepare standard asbestos samples of known concentration has not been developed. It is possible to prepare replicate samples of nearly equal concentration. This has been performed through the PAT program. These asbestos samples are distributed by the AIHA to participating laboratories.
Since only about one-fourth of a 25-mm sample membrane is required for an asbestos count, any PAT sample can serve as a “standard” for replicate counting.
See Safety Precautions in Section 6.1. before proceeding. The objective is to produce samples with a smooth (non-grainy) background in a medium with a refractive index of approximately 1.46. The technique below collapses the filter for easier focusing and produces permanent mounts which are useful for quality control and interlaboratory comparison.
An aluminum block or similar device is required for sample preparation.
6.5.1. Heat the aluminum block to about 70 °C. The hot block should not be used on any surface that can be damaged by either the heat or from exposure to acetone.
6.5.2. Ensure that the glass slides and cover glasses are free of dust and fibers.
6.5.3. Remove the top plug to prevent a vacuum when the cassette is opened. Clean the outside of the cassette if necessary. Cut the seal and/or tape on the cassette with a razor blade. Very carefully separate the base from the extension cowl, leaving the filter and backup pad in the base.
6.5.4. With a rocking motion cut a triangular wedge from the filter using the scalpel. This wedge should be one-sixth to one-fourth of the filter. Grasp the filter wedge with the forceps on the perimeter of the filter which was clamped between the cassette pieces. DO NOT TOUCH the filter with your finger. Place the filter on the glass slide sample side up. Static electricity will usually keep the filter on the slide until it is cleared.
6.5.5. Place the tip of the micropipette containing about 200 µL acetone into the aluminum block. Insert the glass slide into the receiving slot in the aluminum block. Inject the acetone into the block with slow, steady pressure on the plunger while holding the pipette firmly in place. Wait 3 to 5 seconds for the filter to clear, then remove the pipette and slide from the aluminum block.
6.5.6. Immediately (less than 30 seconds) place 2.5 to 3.5 µL of triacetin on the filter (Note: Waiting longer than 30 seconds will result in increased index of refraction and decreased contrast between the fibers and the preparation. This may also lead to separation of the cover slip from the slide).
6.5.7. Lower a cover slip gently onto the filter at a slight angle to reduce the possibility of forming air bubbles. If more than 30 seconds have elapsed between acetone exposure and triacetin application, glue the edges of the cover slip to the slide with lacquer or nail polish.
6.5.8. If clearing is slow, warm the slide for 15 min on a hot plate having a surface temperature of about 50 °C to hasten clearing. The top of the hot block can be used if the slide is not heated too long.
6.5.9. Counting may proceed immediately after clearing and mounting are completed.
Completely align the microscope according to the manufacturer's instructions. Then, align the microscope using the following general alignment routine at the beginning of every counting session and more often if necessary.
6.6.1. Alignment
(1) Clean all optical surfaces. Even a small amount of dirt can significantly degrade the image.
(2) Rough focus the objective on a sample.
(3) Close down the field iris so that it is visible in the field of view. Focus the image of the iris with the condenser focus. Center the image of the iris in the field of view.
(4) Install the phase telescope and focus on the phase rings. Critically center the rings. Misalignment of the rings results in astigmatism which will degrade the image.
(5) Place the phase-shift test slide on the microscope stage and focus on the lines. The analyst must see line set 3 and should see at least parts of 4 and 5 but, not see line set 6 or 6. A microscope/microscopist combination which does not pass this test may not be used.
6.6.2. Counting Fibers
(1) Place the prepared sample slide on the mechanical stage of the microscope. Position the center of the wedge under the objective lens and focus upon the sample.
(2) Start counting from one end of the wedge and progress along a radial line to the other end (count in either direction from perimeter to wedge tip). Select fields randomly, without looking into the eyepieces, by slightly advancing the slide in one direction with the mechanical stage control.
(3) Continually scan over a range of focal planes (generally the upper 10 to 15 µm of the filter surface) with the fine focus control during each field count. Spend at least 5 to 15 seconds per field.
(4) Most samples will contain asbestos fibers with fiber diameters less than 1 µm. Look carefully for faint fiber images. The small diameter fibers will be very hard to see. However, they are an important contribution to the total count.
(5) Count only fibers equal to or longer than 5 µm. Measure the length of curved fibers along the curve.
(6) Count fibers which have a length to width ratio of 3:1 or greater.
(7) Count all the fibers in at least 20 fields. Continue counting until either 100 fibers are counted or 100 fields have been viewed; whichever occurs first. Count all the fibers in the final field.
(8) Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle shall receive a count of
(9) Count bundles of fibers as one fiber unless individual fibers can be clearly identified and each individual fiber is clearly not connected to another counted fiber. See Figure 1 for counting conventions.
(10) Record the number of fibers in each field in a consistent way such that filter non-uniformity can be assessed.
(11) Regularly check phase ring alignment.
(12) When an agglomerate (mass of material) covers more than 25% of the field of view, reject the field and select another. Do not include it in the number of fields counted.
(13) Perform a “blind recount” of 1 in every 10 filter wedges (slides). Re-label the slides using a person other than the original counter.
As previously mentioned in Section 1.3., PCM does not provide positive confirmation of asbestos fibers. Alternate differential counting techniques should be used if discrimination is desirable. Differential counting may include primary discrimination based on morphology, polarized light analysis of fibers, or modification of PCM data by Scanning Electron or Transmission Electron Microscopy.
A great deal of experience is required to routinely and correctly perform differential counting. It is discouraged unless it is legally necessary. Then, only if a fiber is obviously not asbestos should it be excluded from the count. Further discussion of this technique can be found in reference 8.10.
If there is a question whether a fiber is asbestos or not, follow the rule:
“WHEN IN DOUBT, COUNT.”
6.8.1. All individuals performing asbestos analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos or an equivalent course.
6.8.2. Each laboratory engaged in asbestos counting shall set up a slide trading arrangement with at least two other laboratories in order to compare performance and eliminate inbreeding of error. The slide exchange occurs at least semiannually. The round robin results shall be posted where all analysts can view individual analyst's results.
6.8.3. Each laboratory engaged in asbestos counting shall participate in the Proficiency Analytical Testing Program, the Asbestos Analyst Registry or equivalent.
6.8.4. Each analyst shall select and count prepared slides from a “slide bank”. These are quality assurance counts. The slide bank shall be prepared using uniformly distributed samples taken from the workload. Fiber densities should cover the entire range routinely analyzed by the laboratory. These slides are counted blind by all counters to establish an original standard deviation. This historical distribution is compared with the quality assurance counts. A counter must have 95% of all quality control samples counted within three standard deviations of the historical mean. This count is then integrated into a new historical mean and standard deviation for the slide.
The analyses done by the counters to establish the slide bank may be used for an interim quality control program if the data are treated in a proper statistical fashion.
7.1. Calculate the estimated airborne asbestos fiber concentration on the filter sample using the following formula:
The collection area of a filter is seldom equal to 385 mm
Since a given analyst always has the same interpupillary distance, the number of fields per filter for a particular analyst will remain constant for a given size filter. The field size for that analyst is constant (i.e., the analyst is using an assigned microscope and is not changing the reticle).
For example, if the exposed area of the filter is always 385 mm
As mentioned in step 13 of Section 6.6.2., a “blind recount” of 10% of the slides is performed. In all cases, differences will be observed between the first and second counts of the same filter wedge. Most of these differences will be due to chance alone, that is, due to the random variability (precision) of the count method. Statistical recount criteria enables one to decide whether observed differences can be explained due to chance alone or are probably due to systematic differences between analysts, microscopes, or other biasing factors.
The following recount criterion is for a pair of counts that estimate AC in fibers/cc. The criterion is given at the type-I error level. That is, there is 5% maximum risk that we will reject a pair of counts for the reason that one might be biased, when the large observed difference is really due to chance.
Reject a pair of counts if:
If a pair of counts are rejected by this criterion then, recount the rest of the filters in the submitted set. Apply the test and reject any other pairs failing the test. Rejection shall include a memo to the industrial hygienist stating that the sample failed a statistical test for homogeneity and the true air concentration may be significantly different than the reported value.
Report results to the industrial hygienist as fibers/cc. Use two significant figures. If multiple analyses are performed on a sample, an average of the results is to be reported unless any of the results can be rejected for cause.
8.1. Dreesen, W.C., et al, U.S. Public Health Service: A Study of Asbestosis in the Asbestos Textile Industry, (Public Health Bulletin No. 241), US Treasury Dept., Washington, DC, 1938.
8.2. Asbestos Research Council: The Measurement of Airborne Asbestos Dust by the Membrane Filter Method (Technical Note), Asbestos Research Council, Rockdale, Lancashire, Great Britain, 1969.
8.3. Bayer, S.G., Zumwalde, R.D., Brown, T.A., Equipment and Procedure for Mounting Millipore Filters and Counting Asbestos Fibers by Phase Contrast Microscopy, Bureau of Occupational Health, U.S. Dept. of Health, Education and Welfare, Cincinnati, OH, 1969.
8.4. NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1 (DHEW/NIOSH Pub. No. 77-157-A). National Institute for Occupational Safety and Health, Cincinnati, OH, 1977. pp. 239-1-239-21.
8.5. Asbestos, Code of Federal Regulations 29 CFR 1910.1001. 1971.
8.6. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. Final Rule,
8.7. Asbestos, Tremolite, Anthophyllite, and Actinolite, Code of Federal Regulations 1910.1001. 1988. pp 711-752.
8.8. Criteria for a Recommended Standard—Occupational Exposure to Asbestos (DHEW/NIOSH Pub. No. HSM 72-10267), National Institute for Occupational Safety and Health NIOSH, Cincinnati,OH, 1972. pp. III-1-III-24.
8.9. Leidel, N.A., Bayer,S.G., Zumwalde, R.D.,Busch, K.A., USPHS/NIOSH Membrane Filter Method for Evaluating Airborne Asbestos Fibers (DHEW/NIOSH Pub. No. 79-127). National Institute for Occupational Safety and Health, Cincinnati, OH, 1979.
8.10. Dixon, W.C., Applications of Optical Microscopy in Analysis of Asbestos and Quartz, Analytical Techniques in Occupational Health Chemistry, edited by D.D. Dollberg and A.W. Verstuyft. Wash. DC: American Chemical Society, (ACS Symposium Series 120) 1980. pp. 13-41.
The OSHA asbestos regulations require each laboratory to establish a quality control program. The following is presented as an example of how the OSHA-SLTC constructed its internal CV curve as part of meeting this requirement. Data is from 395 samples collected during OSHA compliance inspections and analyzed from October 1980 through April 1986.
Each sample was counted by 2 to 5 different counters independently of one another. The standard deviation and the CV statistic was calculated for each sample. This data was then plotted on a graph of CV vs. fibers/mm
This correction is used if a difference greater than 5% in ambient temperature and/or pressure is noted between calibration and sampling sites and the pump does not compensate for the differences.
When ordering the Graticule for asbestos counting, specify the exact disc diameter needed to fit the ocular of the microscope and the diameter (mm) of the circular counting area. Instructions for measuring the dimensions necessary are listed:
(1) Insert any available graticule into the focusing eyepiece and focus so that the graticule lines are sharp and clear.
(2) Align the microscope.
(3) Place a stage micrometer on the microscope object stage and focus the microscope on the graduated lines.
(4) Measure the magnified grid length, PL (µm), using the stage micrometer.
(5) Remove the graticule from the microscope and measure its actual grid length, AL (mm). This can be accomplished by using a mechanical stage fitted with verniers, or a jeweler's loupe with a direct reading scale.
(6) Let D = 100 µm. Calculate the circle diameter, d
(7) Each eyepiece-objective-reticle combination on the microscope must be calibrated. Should any of the three be changed (by zoom adjustment, disassembly, replacement, etc.), the combination must be recalibrated. Calibration may change if interpupillary distance is changed. Measure the field diameter, D (acceptable range: 100±2 µm) with a stage micrometer upon receipt of the graticule from the manufacturer. Determine the field area (mm
The Graticule is available from: Graticules Ltd., Morley Road, Tonbridge TN9 IRN, Kent, England (Telephone 011-44-732-359061). Also available from PTR Optics Ltd., 145 Newton Street, Waltham, MA 02154 [telephone (617) 891-6000] or McCrone Accessories and Components, 2506 S. Michigan Ave., Chicago, IL 60616 [phone (312)-842-7100]. The graticule is custom made for each microscope.
Counts for the Fibers in the Figure
Structure No. | Count | Explanation |
---|---|---|
1 to 6 | 1 | Single fibers all contained within the circle. |
7 |
| Fiber crosses circle once. |
8 | 0 | Fiber too short. |
9 | 2 | Two crossing fibers. |
10 | 0 | Fiber outside graticule. |
11 | 0 | Fiber crosses graticule twice. |
12 |
| Although split, fiber only crosses once. |
(a) Chest X-rays shall be classified in accordance with the Guidelines for the use of the ILO International Classification of Radiographs of Pneumoconioses (revised edition 2011) (incorporated by reference, see § 1910.6), and recorded on a classification form following the format of the CDC/NIOSH (M) 2.8 form. As a minimum, the content within the bold lines of this form (items 1 through 4) shall be included. This form is not to be submitted to NIOSH.
(b) All X-rays shall be classified only by a B-Reader, a board eligible/certified radiologist, or an experienced physician with known expertise in pneumoconioses.
(c) Whenever classifying chest X-ray film, the physician shall have immediately available for reference a complete set of the ILO standard format radiographs provided for use with the Guidelines for the use of the ILO International Classification of Radiographs of Pneumoconioses (revised edition 2011).
(d) Whenever classifying digitally-acquired chest X-rays, the physician shall have immediately available for reference a complete set of ILO standard digital chest radiographic images provided for use with the Guidelines for the Use of the ILO International Classification of Radiographs of Pneumoconioses (revised edition 2011). Classification of digitally-acquired chest X-rays shall be based on the viewing of images displayed as electronic copies and shall not be based on the viewing of hard copy printed transparencies of images.
This mandatory appendix specifies engineering controls and work practices that must be implemented by the employer during automotive brake and clutch inspection, disassembly, repair, and assembly operations. Proper use of these engineering controls and work practices by trained employees will reduce employees' asbestos exposure below the permissible exposure level during clutch and brake inspection, disassembly, repair, and assembly operations. The employer shall institute engineering controls and work practices using either the method set forth in paragraph [A] or paragraph [B] of this appendix, or any other method which the employer can demonstrate to be equivalent in terms of reducing employee exposure to asbestos as defined and which meets the requirements described in paragraph [C] of this appendix, for those facilities in which no more than 5 pairs of brakes or 5 clutches are inspected, disassembled, reassembled and/or repaired per week, the method set forth in paragraph [D] of this appendix may be used:
(1) The brake and clutch inspection, disassembly, repair, and assembly operations shall be enclosed to cover and contain the clutch or brake assembly and to prevent the release of asbestos fibers into the worker's breathing zone.
(2) The enclosure shall be sealed tightly and thoroughly inspected for leaks before work begins on brake and clutch inspection, disassembly, repair, and assembly.
(3) The enclosure shall be such that the worker can clearly see the operation and shall provide impermeable sleeves through which the worker can handle the brake and clutch inspection, disassembly, repair and assembly. The integrity of the sleeves and ports shall be examined before work begins.
(4) A HEPA-filtered vacuum shall be employed to maintain the enclosure under negative pressure throughout the operation. Compressed-air may be used to remove asbestos fibers or particles from the enclosure.
(5) The HEPA vacuum shall be used first to loosen the asbestos containing residue from the brake and clutch parts and then to evacuate the loosened asbestos containing material from the enclosure and capture the material in the vacuum filter.
(6) The vacuum's filter, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(5) of this section and disposed of according to paragraph (k) of this section.
(7) Any spills or releases of asbestos containing waste material from inside of the enclosure or vacuum hose or vacuum filter shall be immediately cleaned up and disposed of according to paragraph (k) of this section.
(1) A catch basin shall be placed under the brake assembly, positioned to avoid splashes and spills.
(2) The reservoir shall contain water containing an organic solvent or wetting agent. The flow of liquid shall be controlled such that the brake assembly is gently flooded to prevent the asbestos-containing brake dust from becoming airborne.
(3) The aqueous solution shall be allowed to flow between the brake drum and brake support before the drum is removed.
(4) After removing the brake drum, the wheel hub and back of the brake assembly shall be thoroughly wetted to suppress dust.
(5) The brake support plate, brake shoes and brake components used to attach the brake shoes shall be thoroughly washed before removing the old shoes.
(6) In systems using filters, the filters, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(4) of this section and disposed of according to paragraph (k) of this section.
(7) Any spills of asbestos-containing aqueous solution or any asbestos-containing waste material shall be cleaned up immediately and disposed of according to paragraph (k) of this section.
(8) The use of dry brushing during low pressure/wet cleaning operations is prohibited.
An equivalent method is one which has sufficient written detail so that it can be reproduced and has been demonstrated that the exposures resulting from the equivalent method are equal to or less than the exposures which would result from the use of the method described in paragraph [A] of this appendix. For purposes of making this comparison, the employer shall assume that exposures resulting from the use of the method described in paragraph [A] of this appendix shall not exceed 0.016 f/cc, as measured by the OSHA reference method and as averaged over at least 18 personal samples.
(1) A spray bottle, hose nozzle, or other implement capable of delivering a fine mist of water or amended water or other delivery system capable of delivering water at low pressure, shall be used to first thoroughly wet the brake and clutch parts. Brake and clutch components shall then be wiped clean with a cloth.
(2) The cloth shall be placed in an impermeable container, labelled according to paragraph (j)(4) of this section and then disposed of according to paragraph (k) of this section, or the cloth shall be laundered in a way to prevent the release of asbestos fibers in excess of 0.1 fiber per cubic centimeter of air.
(3) Any spills of solvent or any asbestos containing waste material shall be cleaned up immediately according to paragraph (k) of this section.
(4) The use of dry brushing during the wet method operations is prohibited.
A. Substance: “Asbestos” is the name of a class of magnesium-silicate minerals that occur in fibrous form. Minerals that are included in this group are chrysotile, crocidolite, amosite, tremolite asbestos, anthophyllite asbestos, and actinolite asbestos.
B. Asbestos is used in the manufacture of heat-resistant clothing, automative brake and clutch linings, and a variety of building materials including floor tiles, roofing felts, ceiling tiles, asbestos-cement pipe and sheet, and fire-resistant drywall. Asbestos is also present in pipe and boiler insulation materials, and in sprayed-on materials located on beams, in crawlspaces, and between walls.
C. The potential for a product containing asbestos to release breatheable fibers depends on its degree of friability. Friable means that the material can be crumbled with hand pressure and is therefore likely to emit fibers. The fibrous or fluffy sprayed-on materials used for fireproofing, insulation, or sound proofing are considered to be friable, and they readily release airborne fibers if disturbed. Materials such as vinyl-asbestos floor tile or roofing felts are considered nonfriable and generally do not emit airborne fibers unless subjected to sanding or sawing operations. Asbestos-cement pipe or sheet can emit airborne fibers if the materials are cut or sawed, or if they are broken during demolition operations.
D. Permissible exposure: Exposure to airborne asbestos fibers may not exceed 0.2 fibers per cubic centimeter of air (0.1 f/cc) averaged over the 8-hour workday.
A. Asbestos can cause disabling respiratory disease and various types of cancers if the fibers are inhaled. Inhaling or ingesting fibers from contaminated clothing or skin can also result in these diseases. The symptoms of these diseases generally do not appear for 20 or more years after initial exposure.
B. Exposure to asbestos has been shown to cause lung cancer, mesothelioma, and cancer of the stomach and colon. Mesothelioma is a rare cancer of the thin membrane lining of the chest and abdomen. Symptoms of mesothelioma include shortness of breath, pain in the walls of the chest, and/or abdominal pain.
A. Respirators: You are required to wear a respirator when performing tasks that result in asbestos exposure that exceeds the permissible exposure limit (PEL) of 0.1 f/cc. These conditions can occur while your employer is in the process of installing engineering controls to reduce asbestos exposure, or where engineering controls are not feasible to reduce asbestos exposure. Air-purifying respirators equipped with a high-efficiency particulate air (HEPA) filter can be used where airborne asbestos fiber concentrations do not exceed 2 f/cc; otherwise, air-supplied, positive-pressure, full facepiece respirators must be used. Disposable respirators or dust masks are not permitted to be used for asbestos work. For effective protection, respirators must fit your face and head snugly. Your employer is required to conduct fit tests when you are first assigned a respirator and every 6 months thereafter. Respirators should not be loosened or removed in work situations where their use is required.
B. Protective clothing: You are required to wear protective clothing in work areas where asbestos fiber concentrations exceed the permissible exposure limit.
A. Wastes that are generated by processes where asbestos is present include:
1. Empty asbestos shipping containers.
2. Process wastes such as cuttings, trimmings, or reject material.
3. Housekeeping waste from sweeping or vacuuming.
4. Asbestos fireproofing or insulating material that is removed from buildings.
5. Building products that contain asbestos removed during building renovation or demolition.
6. Contaminated disposable protective clothing.
B. Empty shipping bags can be flattened under exhaust hoods and packed into airtight containers for disposal. Empty shipping drums are difficult to clean and should be sealed.
C. Vacuum bags or disposable paper filters should not be cleaned, but should be sprayed with a fine water mist and placed into a labeled waste container.
D. Process waste and housekeeping waste should be wetted with water or a mixture of water and surfactant prior to packaging in disposable containers.
E. Material containing asbestos that is removed from buildings must be disposed of in leak-tight 6-mil thick plastic bags, plastic-lined cardboard containers, or plastic-lined metal containers. These wastes, which are removed while wet, should be sealed in containers before they dry out to minimize the release of asbestos fibers during handling.
A. Each year, your employer is required to inform you of the information contained in this standard and appendices for asbestos. In addition, your employer must instruct you in the proper work practices for handling materials containing asbestos, and the correct use of protective equipment.
B. Your employer is required to determine whether you are being exposed to asbestos. You or your representative has the right to observe employee measurements and to record the results obtained. Your employer is required to inform you of your exposure, and, if you are exposed above the permissible limit, he or she is required to inform you of the actions that are being taken to reduce your exposure to within the permissible limit.
C. Your employer is required to keep records of your exposures and medical examinations. These exposure records must be kept for at least thirty (30) years. Medical records must be kept for the period of your employment plus thirty (30) years.
D. Your employer is required to release your exposure and medical records to your physician or designated representative upon your written request.
Clinical evidence of the adverse effects associated with exposure to asbestos is present in the form of several well-conducted epidemiological studies of occupationally exposed workers, family contacts of workers, and persons living near asbestos mines. These studies have shown a definite association between exposure to asbestos and an increased incidence of lung cancer, pleural and peritoneal mesothelioma, gastrointestinal cancer, and asbestosis. The latter is a disabling fibrotic lung disease that is caused only by exposure to asbestos. Exposure to asbestos has also been associated with an increased incidence of esophageal, kidney, laryngeal, pharyngeal, and buccal cavity cancers. As with other known chronic occupational diseases, disease associated with asbestos generally appears about 20 years following the first occurrence of exposure: There are no known acute effects associated with exposure to asbestos.
Epidemiological studies indicate that the risk of lung cancer among exposed workers who smoke cigarettes is greatly increased over the risk of lung cancer among non-exposed smokers or exposed nonsmokers. These studies suggest that cessation of smoking will reduce the risk of lung cancer for a person exposed to asbestos but will not reduce it to the same level of risk as that existing for an exposed worker who has never smoked.
The signs and symptoms of lung cancer or gastrointestinal cancer induced by exposure to asbestos are not unique, except that a chest X-ray of an exposed patient with lung cancer may show pleural plaques, pleural calcification, or pleural fibrosis, and may also show asbestosis (i.e., small irregular parenchymal opacities). Symptoms characteristic of mesothelioma include shortness of breath, pain in the chest or abdominal pain. Mesothelioma has a much longer average latency period compared with lung cancer (40 years versus 15-20 years), and mesothelioma is therefore more likely to be found among workers who were first exposed to asbestos at an early age. Mesothelioma is a fatal disease.
Asbestosis is pulmonary fibrosis caused by the accumulation of asbestos fibers in the lungs. Symptoms include shortness of breath, coughing, fatigue, and vague feelings of sickness. When the fibrosis worsens, shortness of breath occurs even at rest. The diagnosis of asbestosis is most commonly based on a history of exposure to asbestos, the presence of characteristic radiologic abnormalities, end-inspiratory crackles (rales), and other clinical features of fibrosing lung disease. Pleural plaques and thickening may be observed on chest X-rays. Asbestosis is often a progressive disease even in the absence of continued exposure, although this appears to be a highly individualized characteristic. In severe cases, death may be caused by respiratory or cardiac failure.
As noted in section III of this appendix, exposure to asbestos has been linked to an increased risk of lung cancer, mesothelioma, gastrointestinal cancer, and asbestosis among occupationally exposed workers. Adequate screening tests to determine an employee's potential for developing serious chronic diseases, such as cancer, from exposure to asbestos do not presently exist. However, some tests, particularly chest X-rays and pulmonary function tests, may indicate that an employee has been overexposed to asbestos increasing his or her risk of developing exposure-related chronic diseases. It is important for the physician to become familiar with the operating conditions in which occupational exposure to asbestos is likely to occur. This is particularly important in evaluating medical and work histories and in conducting physical examinations. When an active employee has been identified as having been overexposed to asbestos, measures taken by the employer to eliminate or mitigate further exposure should also lower the risk of serious long-term consequences.
The employer is required to institute a medical surveillance program for all employees who are or will be exposed to asbestos at or above the permissible exposure limit (0.1 fiber per cubic centimeter of air). All examinations and procedures must be performed by or under the supervision of a licensed physician, at a reasonable time and place, and at no cost to the employee.
Although broad latitude is given to the physician in prescribing specific tests to be included in the medical surveillance program, OSHA requires inclusion of the following elements in the routine examination:
(i) Medical and work histories with special emphasis directed to symptoms of the respiratory system, cardiovascular system, and digestive tract.
(ii) Completion of the respiratory disease questionnaire contained in appendix D of this section.
(iii) A physical examination including a chest X-ray and pulmonary function test that includes measurement of the employee's forced vital capacity (FVC) and forced expiratory volume at one second (FEV
(iv) Any laboratory or other test that the examining physician deems by sound medical practice to be necessary.
The employer is required to make the prescribed tests available at least annually to those employees covered; more often than specified if recommended by the examining physician; and upon termination of employment.
The employer is required to provide the physician with the following information: A copy of the standard in this section (including all appendices to this section); a description of the employee's duties as they relate to asbestos exposure; the employee's representative level of exposure to asbestos; a description of any personal protective and respiratory equipment used; and information from previous medical examinations of the affected employee that is not otherwise available to the physician. Making this information available to the physician will aid in the evaluation of the employee's health in relation to assigned duties and fitness to wear personal protective equipment, if required.
The employer is required to obtain a written opinion from the examining physician containing the results of the medical examination; the physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of exposure-related disease; any recommended limitations on the employee or on the use of personal protective equipment; and a statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions related to asbestos exposure that require further explanation or treatment. This written opinion must not reveal specific findings or diagnoses unrelated to exposure to asbestos, and a copy of the opinion must be provided to the affected employee.
The following organizations provide smoking cessation information and program material.
1. The National Cancer Institute operates a toll-free Cancer Information Service (CIS) with trained personnel to help you. Call 1-800-4-CANCER* to reach the CIS office serving your area, or write: Office of Cancer Communications, National Cancer Institute, National Institutes of Health, Building 31, Room 10A24, Bethesda, Maryland 20892.
2. American Cancer Society, 3340 Peachtree Road, NE., Atlanta, Georgia 30062, (404) 320-3333.
The American Cancer Society (ACS) is a voluntary organization composed of 58 divisions and 3,100 local units. Through “The Great American Smokeout” in November, the annual Cancer Crusade in April, and numerous educational materials, ACS helps people learn about the health hazards of smoking and become successful ex-smokers.
3. American Heart Association, 7320 Greenville Avenue, Dallas, Texas 75231, (214) 750-5300.
The American Heart Association (AHA) is a voluntary organization with 130,000 members (physicians, scientists, and laypersons) in 55 state and regional groups. AHA produces a variety of publications and audiovisual materials about the effects of smoking on the heart. AHA also has developed a guidebook for incorporating a weight-control component into smoking cessation programs.
4. American Lung Association, 1740 Broadway, New York, New York 10019, (212) 245-8000.
A voluntary organization of 7,500 members (physicians, nurses, and laypersons), the American Lung Association (ALA) conducts numerous public information programs about the health effect of smoking. ALA has 59 state and 85 local units. The organization actively supports legislation and information campaigns for non-smokers' rights and provides help for smokers who want to quit, for example, through “Freedom From Smoking,” a self-help smoking cessation program.
5. Office on Smoking and Health, U.S. Department of Health and, Human Services, 5600 Fishers Lane, Park Building, Room 110, Rockville, Maryland 20857.
The Office on Smoking and Health (OSH) is the Department of Health and Human Services' lead agency in smoking control. OSH has sponsored distribution of publications on smoking-realted topics, such as free flyers on relapse after initial quitting, helping a friend or family member quit smoking, the health hazards of smoking, and the effects of parental smoking on teenagers.
*In Hawaii, on Oahu call 524-1234 (call collect from neighboring islands),
Spanish-speaking staff members are available during daytime hours to callers from the following areas: California, Florida, Georgia, Illinois, New Jersey (area code 210), New York, and Texas. Consult your local telephone directory for listings of local chapters.
Collect approximately 1 to 2 grams of each type of material and place into separate 20 mL scintillation vials.
A portion of each separate phase is analyzed by gross examination, phase-polar examination, and central stop dispersion microscopy.
Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources may be substituted.
This method describes the collection and analysis of asbestos bulk materials by light microscopy techniques including phase- polar illumination and central-stop dispersion microscopy. Some terms unique to asbestos analysis are defined below:
Amphibole: A family of minerals whose crystals are formed by long, thin units which have two thin ribbons of double chain silicate with a brucite ribbon in between. The shape of each unit is similar to an “I beam”. Minerals important in asbestos analysis include cummingtonite-grunerite, crocidolite, tremolite-actinolite and anthophyllite.
Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, cummingtonite-grunerite asbestos (amosite), anthophyllite asbestos, tremolite asbestos, crocidolite, actinolite asbestos and any of these minerals which have been chemically treated or altered. The precise chemical formulation of each species varies with the location from which it was mined. Nominal compositions are listed:
Chrysotile | Mg |
Crocidolite (Riebeckite asbestos) | Na |
Cummingtonite-Grunerite asbestos (Amosite) | (Mg,Fe) |
Tremolite-Actinolite asbestos | Ca |
Anthophyllite asbestos | (Mg,Fe) |
Asbestos Fiber: A fiber of asbestos meeting the criteria for a fiber. (See section 3.5.)
Aspect Ratio: The ratio of the length of a fiber to its diameter usually defined as “length : width”, e.g. 3:1.
Brucite: A sheet mineral with the composition Mg(OH)
Central Stop Dispersion Staining (microscope): This is a dark field microscope technique that images particles using only light refracted by the particle, excluding light that travels through the particle unrefracted. This is usually accomplished with a McCrone objective or other arrangement which places a circular stop with apparent aperture equal to the objective aperture in the back focal plane of the microscope.
Cleavage Fragments: Mineral particles formed by the comminution of minerals, especially those characterized by relatively parallel sides and moderate aspect ratio.
Differential Counting: The term applied to the practice of excluding certain kinds of fibers from a phase contrast asbestos count because they are not asbestos.
Fiber: A particle longer than or equal to 5 µm with a length to width ratio greater than or equal to 3:1. This may include cleavage fragments. (see section 3.5 of this appendix).
Phase Contrast: Contrast obtained in the microscope by causing light scattered by small particles to destructively interfere with unscattered light, thereby enhancing the visibility of very small particles and particles with very low intrinsic contrast.
Phase Contrast Microscope: A microscope configured with a phase mask pair to create phase contrast. The technique which uses this is called Phase Contrast Microscopy (PCM).
Phase-Polar Analysis: This is the use of polarized light in a phase contrast microscope. It is used to see the same size fibers that are visible in air filter analysis. Although fibers finer than 1 µm are visible, analysis of these is inferred from analysis of larger bundles that are usually present.
Phase-Polar Microscope: The phase-polar microscope is a phase contrast microscope which has an analyzer, a polarizer, a first order red plate and a rotating phase condenser all in place so that the polarized light image is enhanced by phase contrast.
Sealing Encapsulant: This is a product which can be applied, preferably by spraying, onto an asbestos surface which will seal the surface so that fibers cannot be released.
Serpentine: A mineral family consisting of minerals with the general composition Mg
Light microscopy has been used for well over 100 years for the determination of mineral species. This analysis is carried out using specialized polarizing microscopes as well as bright field microscopes. The identification of minerals is an on-going process with many new minerals described each year. The first recorded use of asbestos was in Finland about 2500 B.C. where the material was used in the mud wattle for the wooden huts the people lived in as well as strengthening for pottery. Adverse health aspects of the mineral were noted nearly 2000 years ago when Pliny the Younger wrote about the poor health of slaves in the asbestos mines. Although known to be injurious for centuries, the first modern references to its toxicity were by the British Labor Inspectorate when it banned asbestos dust from the workplace in 1898. Asbestosis cases were described in the literature after the turn of the century. Cancer was first suspected in the mid 1930's and a causal link to mesothelioma was made in 1965. Because of the public concern for worker and public safety with the use of this material, several different types of analysis were applied to the determination of asbestos content. Light microscopy requires a great deal of experience and craft. Attempts were made to apply less subjective methods to the analysis. X-ray diffraction was partially successful in determining the mineral types but was unable to separate out the fibrous portions from the non-fibrous portions. Also, the minimum detection limit for asbestos analysis by X-ray diffraction (XRD) is about 1%. Differential Thermal Analysis (DTA) was no more successful. These provide useful corroborating information when the presence of asbestos has been shown by microscopy; however, neither can determine the difference between fibrous and non-fibrous minerals when both habits are present. The same is true of Infrared Absorption (IR).
When electron microscopy was applied to asbestos analysis, hundreds of fibers were discovered present too small to be visible in any light microscope. There are two different types of electron microscope used for asbestos analysis: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Scanning Electron Microscopy is useful in identifying minerals. The SEM can provide two of the three pieces of information required to identify fibers by electron microscopy: morphology and chemistry. The third is structure as determined by Selected Area Electron Diffraction—SAED which is performed in the TEM. Although the resolution of the SEM is sufficient for very fine fibers to be seen, accuracy of chemical analysis that can be performed on the fibers varies with fiber diameter in fibers of less than 0.2 µm diameter. The TEM is a powerful tool to identify fibers too small to be resolved by light microscopy and should be used in conjunction with this method when necessary. The TEM can provide all three pieces of information required for fiber identification. Most fibers thicker than 1 µm can adequately be defined in the light microscope. The light microscope remains as the best instrument for the determination of mineral type. This is because the minerals under investigation were first described analytically with the light microscope. It is inexpensive and gives positive identification for most samples analyzed. Further, when optical techniques are inadequate, there is ample indication that alternative techniques should be used for complete identification of the sample.
Minerals consist of atoms that may be arranged in random order or in a regular arrangement. Amorphous materials have atoms in random order while crystalline materials have long range order. Many materials are transparent to light, at least for small particles or for thin sections. The properties of these materials can be investigated by the effect that the material has on light passing through it. The six asbestos minerals are all crystalline with particular properties that have been identified and cataloged. These six minerals are anisotropic. They have a regular array of atoms, but the arrangement is not the same in all directions. Each major direction of the crystal presents a different regularity. Light photons travelling in each of these main directions will encounter different electrical neighborhoods, affecting the path and time of travel. The techniques outlined in this method use the fact that light traveling through fibers or crystals in different directions will behave differently, but predictably. The behavior of the light as it travels through a crystal can be measured and compared with known or determined values to identify the mineral species. Usually, Polarized Light Microscopy (PLM) is performed with strain-free objectives on a bright-field microscope platform. This would limit the resolution of the microscope to about 0.4 µm. Because OSHA requires the counting and identification of fibers visible in phase contrast, the phase contrast platform is used to visualize the fibers with the polarizing elements added into the light path. Polarized light methods cannot identify fibers finer than about 1 µm in diameter even though they are visible. The finest fibers are usually identified by inference from the presence of larger, identifiable fiber bundles. When fibers are present, but not identifiable by light microscopy, use either SEM or TEM to determine the fiber identity.
The advantages of light microcopy are:
(a) Basic identification of the materials was first performed by light microscopy and gross analysis. This provides a large base of published information against which to check analysis and analytical technique.
(b) The analysis is specific to fibers. The minerals present can exist in asbestiform, fibrous, prismatic, or massive varieties all at the same time. Therefore, bulk methods of analysis such as X-ray diffraction, IR analysis, DTA, etc. are inappropriate where the material is not known to be fibrous.
(c) The analysis is quick, requires little preparation time, and can be performed on-site if a suitably equipped microscope is available.
The disadvantages are:
(a) Even using phase-polar illumination, not all the fibers present may be seen. This is a problem for very low asbestos concentrations where agglomerations or large bundles of fibers may not be present to allow identification by inference.
(b) The method requires a great degree of sophistication on the part of the microscopist. An analyst is only as useful as his mental catalog of images. Therefore, a microscopist's accuracy is enhanced by experience. The mineralogical training of the analyst is very important. It is the basis on which subjective decisions are made.
(c) The method uses only a tiny amount of material for analysis. This may lead to sampling bias and false results (high or low). This is especially true if the sample is severely inhomogeneous.
(d) Fibers may be bound in a matrix and not distinguishable as fibers so identification cannot be made.
1.4.1. This method can be used for determination of asbestos content from 0 to 100% asbestos. The detection limit has not been adequately determined, although for selected samples, the limit is very low, depending on the number of particles examined. For mostly homogeneous, finely divided samples, with no difficult fibrous interferences, the detection limit is below 1%. For inhomogeneous samples (most samples), the detection limit remains undefined. NIST has conducted proficiency testing of laboratories on a national scale. Although each round is reported statistically with an average, control limits, etc., the results indicate a difficulty in establishing precision especially in the low concentration range. It is suspected that there is significant bias in the low range especially near 1%. EPA tried to remedy this by requiring a mandatory point counting scheme for samples less than 10%. The point counting procedure is tedious, and may introduce significant biases of its own. It has not been incorporated into this method.
1.4.2. The precision and accuracy of the quantitation tests performed in this method are unknown. Concentrations are easier to determine in commercial products where asbestos was deliberately added because the amount is usually more than a few percent. An analyst's results can be “calibrated” against the known amounts added by the manufacturer. For geological samples, the degree of homogeneity affects the precision.
1.4.3. The performance of the method is analyst dependent. The analyst must choose carefully and not necessarily randomly the portions for analysis to assure that detection of asbestos occurs when it is present. For this reason, the analyst must have adequate training in sample preparation, and experience in the location and identification of asbestos in samples. This is usually accomplished through substantial on-the-job training as well as formal education in mineralogy and microscopy.
Any material which is long, thin, and small enough to be viewed under the microscope can be considered an interference for asbestos. There are literally hundreds of interferences in workplaces. The techniques described in this method are normally sufficient to eliminate the interferences. An analyst's success in eliminating the interferences depends on proper training.
Asbestos minerals belong to two mineral families: the serpentines and the amphiboles. In the serpentine family, the only common fibrous mineral is chrysotile. Occasionally, the mineral antigorite occurs in a fibril habit with morphology similar to the amphiboles. The amphibole minerals consist of a score of different minerals of which only five are regulated by federal standard: amosite, crocidolite, anthophyllite asbestos, tremolite asbestos and actinolite asbestos. These are the only amphibole minerals that have been commercially exploited for their fibrous properties; however, the rest can and do occur occasionally in asbestiform habit.
In addition to the related mineral interferences, other minerals common in building material may present a problem for some microscopists: gypsum, anhydrite, brucite, quartz fibers, talc fibers or ribbons, wollastonite, perlite, attapulgite, etc. Other fibrous materials commonly present in workplaces are: fiberglass, mineral wool, ceramic wool, refractory ceramic fibers, kevlar, nomex, synthetic fibers, graphite or carbon fibers, cellulose (paper or wood) fibers, metal fibers, etc.
Matrix embedding material can sometimes be a negative interference. The analyst may not be able to easily extract the fibers from the matrix in order to use the method. Where possible, remove the matrix before the analysis, taking careful note of the loss of weight. Some common matrix materials are: vinyl, rubber, tar, paint, plant fiber, cement, and epoxy. A further negative interference is that the asbestos fibers themselves may be either too small to be seen in Phase contrast Microscopy (PCM) or of a very low fibrous quality, having the appearance of plant fibers. The analyst's ability to deal with these materials increases with experience.
Asbestos is ubiquitous in the environment. More than 40% of the land area of the United States is composed of minerals which may contain asbestos. Fortunately, the actual formation of great amounts of asbestos is relatively rare. Nonetheless, there are locations in which environmental exposure can be severe such as in the Serpentine Hills of California.
There are thousands of uses for asbestos in industry and the home. Asbestos abatement workers are the most current segment of the population to have occupational exposure to great amounts of asbestos. If the material is undisturbed, there is no exposure. Exposure occurs when the asbestos-containing material is abraded or otherwise disturbed during maintenance operations or some other activity. Approximately 95% of the asbestos in place in the United States is chrysotile.
Amosite and crocidolite make up nearly all the difference. Tremolite and anthophyllite make up a very small percentage. Tremolite is found in extremely small amounts in certain chrysotile deposits. Actinolite exposure is probably greatest from environmental sources, but has been identified in vermiculite containing, sprayed-on insulating materials which may have been certified as asbestos-free.
The nominal chemical compositions for the asbestos minerals were given in Section 1. Compared to cleavage fragments of the same minerals, asbestiform fibers possess a high tensile strength along the fiber axis. They are chemically inert, non- combustible, and heat resistant. Except for chrysotile, they are insoluble in Hydrochloric acid (HCl). Chrysotile is slightly soluble in HCl. Asbestos has high electrical resistance and good sound absorbing characteristics. It can be woven into cables, fabrics or other textiles, or matted into papers, felts, and mats.
Possible physiologic results of respiratory exposure to asbestos are mesothelioma of the pleura or peritoneum, interstitial fibrosis, asbestosis, pneumoconiosis, or respiratory cancer. The possible consequences of asbestos exposure are detailed in the NIOSH Criteria Document or in the OSHA Asbestos Standards 29 CFR 1910.1001 and 29 CFR 1926.1101 and 29 CFR 1915.1001.
(a) Tube or cork borer sampling device
(b) Knife
(c) 20 mL scintillation vial or similar vial
(d) Sealing encapsulant
Asbestos is a known carcinogen. Take care when sampling. While in an asbestos-containing atmosphere, a properly selected and fit-tested respirator should be worn. Take samples in a manner to cause the least amount of dust. Follow these general guidelines:
(a) Do not make unnecessary dust.
(b) Take only a small amount (1 to 2 g).
(c) Tightly close the sample container.
(d) Use encapsulant to seal the spot where the sample was taken, if necessary.
Samples of any suspect material should be taken from an inconspicuous place. Where the material is to remain, seal the sampling wound with an encapsulant to eliminate the potential for exposure from the sample site. Microscopy requires only a few milligrams of material. The amount that will fill a 20 mL scintillation vial is more than adequate. Be sure to collect samples from all layers and phases of material. If possible, make separate samples of each different phase of the material. This will aid in determining the actual hazard. DO NOT USE ENVELOPES, PLASTIC OR PAPER BAGS OF ANY KIND TO COLLECT SAMPLES. The use of plastic bags presents a contamination hazard to laboratory personnel and to other samples. When these containers are opened, a bellows effect blows fibers out of the container onto everything, including the person opening the container.
If a cork-borer type sampler is available, push the tube through the material all the way, so that all layers of material are sampled. Some samplers are intended to be disposable. These should be capped and sent to the laboratory. If a non-disposable cork borer is used, empty the contents into a scintillation vial and send to the laboratory. Vigorously and completely clean the cork borer between samples.
Samples packed in glass vials must not touch or they might break in shipment.
(a) Seal the samples with a sample seal over the end to guard against tampering and to identify the sample.
(b) Package the bulk samples in separate packages from the air samples. They may cross-contaminate each other and will invalidate the results of the air samples.
(c) Include identifying paperwork with the samples, but not in contact with the suspected asbestos.
(d) To maintain sample accountability, ship the samples by certified mail, overnight express, or hand carry them to the laboratory.
The analysis of asbestos samples can be divided into two major parts: sample preparation and microscopy. Because of the different asbestos uses that may be encountered by the analyst, each sample may need different preparation steps. The choices are outlined below. There are several different tests that are performed to identify the asbestos species and determine the percentage. They will be explained below.
(a) Do not create unnecessary dust. Handle the samples in HEPA-filter equipped hoods. If samples are received in bags, envelopes or other inappropriate container, open them only in a hood having a face velocity at or greater than 100 fpm. Transfer a small amount to a scintillation vial and only handle the smaller amount.
(b) Open samples in a hood, never in the open lab area.
(c) Index of refraction oils can be toxic. Take care not to get this material on the skin. Wash immediately with soap and water if this happens.
(d) Samples that have been heated in the muffle furnace or the drying oven may be hot. Handle them with tongs until they are cool enough to handle.
(e) Some of the solvents used, such as THF (tetrahydrofuran), are toxic and should only be handled in an appropriate fume hood and according to instructions given in the Safety data sheet (SDS).
(a) Phase contrast microscope with 10x, 16x and 40x objectives, 10x wide-field eyepieces, G-22 Walton-Beckett graticule, Whipple disk, polarizer, analyzer and first order red or gypsum plate, 100 Watt illuminator, rotating position condenser with oversize phase rings, central stop dispersion objective, Kohler illumination and a rotating mechanical stage.
(b) Stereo microscope with reflected light illumination, transmitted light illumination, polarizer, analyzer and first order red or gypsum plate, and rotating stage.
(c) Negative pressure hood for the stereo microscope
(d) Muffle furnace capable of 600 °C
(e) Drying oven capable of 50-150 °C
(f) Aluminum specimen pans
(g) Tongs for handling samples in the furnace
(h) High dispersion index of refraction oils (Special for dispersion staining.)
(i) A set of index of refraction oils from about n = 1.350 to n = 2.000 in n = 0.005 increments. (Standard for Becke line analysis.)
(j) Glass slides with painted or frosted ends 1 × 3 inches 1mm thick, precleaned.
(k) Cover Slips 22 × 22 mm, #1
(l) Paper clips or dissection needles
(m) Hand grinder
(n) Scalpel with both #10 and #11 blades
(o) 0.1 molar HCl
(p) Decalcifying solution (Baxter Scientific Products) Ethylenediaminetetraacetic Acid,
(q) Tetrahydrofuran (THF)
(r) Hotplate capable of 60 °C
(s) Balance
(t) Hacksaw blade
(u) Ruby mortar and pestle
Sample preparation begins with pre-preparation which may include chemical reduction of the matrix, heating the sample to dryness or heating in the muffle furnace. The end result is a sample which has been reduced to a powder that is sufficiently fine to fit under the cover slip. Analyze different phases of samples separately, e.g., tile and the tile mastic should be analyzed separately as the mastic may contain asbestos while the tile may not.
Samples with a high water content will not give the proper dispersion colors and must be dried prior to sample mounting. Remove the lid of the scintillation vial, place the bottle in the drying oven and heat at 100 °C to dryness (usually about 2 h). Samples which are not submitted to the lab in glass must be removed and placed in glass vials or aluminum weighing pans before placing them in the drying oven.
These may include samples with tar as a matrix, vinyl asbestos tile, or any other organic that can be reduced by heating. Remove the sample from the vial and weigh in a balance to determine the weight of the submitted portion. Place the sample in a muffle furnace at 500 °C for 1 to 2 h or until all obvious organic material has been removed. Retrieve, cool and weigh again to determine the weight loss on ignition. This is necessary to determine the asbestos content of the submitted sample, because the analyst will be looking at a reduced sample.
Heating above 600 °C will cause the sample to undergo a structural change which, given sufficient time, will convert the chrysotile to forsterite. Heating even at lower temperatures for 1 to 2 h may have a measurable effect on the optical properties of the minerals. If the analyst is unsure of what to expect, a sample of standard asbestos should be heated to the same temperature for the same length of time so that it can be examined for the proper interpretation.
Vinyl asbestos tile is the most common material treated with this solvent, although, substances containing tar will sometimes yield to this treatment. Select a portion of the material and then grind it up if possible. Weigh the sample and place it in a test tube. Add sufficient THF to dissolve the organic matrix. This is usually about 4 to 5 mL. Remember, THF is highly flammable. Filter the remaining material through a tared silver membrane, dry and weigh to determine how much is left after the solvent extraction. Further process the sample to remove carbonate or mount directly.
Carbonate material is often found on fibers and sometimes must be removed in order to perform dispersion microscopy. Weigh out a portion of the material and place it in a test tube. Add a sufficient amount of 0.1 M HCl or decalcifying solution in the tube to react all the carbonate as evidenced by gas formation; i.e., when the gas bubbles stop, add a little more solution. If no more gas forms, the reaction is complete. Filter the material out through a tared silver membrane, dry and weigh to determine the weight lost.
Samples must be prepared so that accurate determination can be made of the asbestos type and amount present. The following steps are carried out in the low-flow hood (a low-flow hood has less than 50 fpm flow):
(1) If the sample has large lumps, is hard, or cannot be made to lie under a cover slip, the grain size must be reduced. Place a small amount between two slides and grind the material between them or grind a small amount in a clean mortar and pestle. The choice of whether to use an alumina, ruby, or diamond mortar depends on the hardness of the material. Impact damage can alter the asbestos mineral if too much mechanical shock occurs. (Freezer mills can completely destroy the observable crystallinity of asbestos and should not be used). For some samples, a portion of material can be shaved off with a scalpel, ground off with a hand grinder or hack saw blade.
The preparation tools should either be disposable or cleaned thoroughly. Use vigorous scrubbing to loosen the fibers during the washing. Rinse the implements with copious amounts of water and air-dry in a dust-free environment.
(2) If the sample is powder or has been reduced as in (1) above, it is ready to mount. Place a glass slide on a piece of optical tissue and write the identification on the painted or frosted end. Place two drops of index of refraction medium n = 1.550 on the slide. (The medium n = 1.550 is chosen because it is the matching index for chrysotile. Dip the end of a clean paper-clip or dissecting needle into the droplet of refraction medium on the slide to moisten it. Then dip the probe into the powder sample. Transfer what sticks on the probe to the slide. The material on the end of the probe should have a diameter of about 3 mm for a good mount. If the material is very fine, less sample may be appropriate. For non-powder samples such as fiber mats, forceps should be used to transfer a small amount of material to the slide. Stir the material in the medium on the slide, spreading it out and making the preparation as uniform as possible. Place a cover-slip on the preparation by gently lowering onto the slide and allowing it to fall “trapdoor” fashion on the preparation to push out any bubbles. Press gently on the cover slip to even out the distribution of particulate on the slide. If there is insufficient mounting oil on the slide, one or two drops may be placed near the edge of the coverslip on the slide. Capillary action will draw the necessary amount of liquid into the preparation. Remove excess oil with the point of a laboratory wiper.
Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely inhomogeneous samples.
When it is determined that amphiboles may be present, repeat the above process using the appropriate high-dispersion oils until an identification is made or all six asbestos minerals have been ruled out. Note that percent determination must be done in the index medium 1.550 because amphiboles tend to disappear in their matching mediums.
This method presumes some knowledge of mineralogy and optical petrography.
The analysis consists of three parts: The determination of whether there is asbestos present, what type is present and the determination of how much is present. The general flow of the analysis is:
(1) Gross examination.
(2) Examination under polarized light on the stereo microscope.
(3) Examination by phase-polar illumination on the compound phase microscope.
(4) Determination of species by dispersion stain. Examination by Becke line analysis may also be used; however, this is usually more cumbersome for asbestos determination.
(5) Difficult samples may need to be analyzed by SEM or TEM, or the results from those techniques combined with light microscopy for a definitive identification. Identification of a particle as asbestos requires that it be asbestiform. Description of particles should follow the suggestion of Campbell. (Figure 1)
For the purpose of regulation, the mineral must be one of the six minerals covered and must be in the asbestos growth habit. Large specimen samples of asbestos generally have the gross appearance of wood. Fibers are easily parted from it. Asbestos fibers are very long compared with their widths. The fibers have a very high tensile strength as demonstrated by bending without breaking. Asbestos fibers exist in bundles that are easily parted, show longitudinal fine structure and may be tufted at the ends showing “bundle of sticks” morphology. In the microscope some of these properties may not be observable. Amphiboles do not always show striations along their length even when they are asbestos. Neither will they always show tufting. They generally do not show a curved nature except for very long fibers. Asbestos and asbestiform minerals are usually characterized in groups by extremely high aspect ratios (greater than 100:1). While aspect ratio analysis is useful for characterizing populations of fibers, it cannot be used to identify individual fibers of intermediate to short aspect ratio. Observation of many fibers is often necessary to determine whether a sample consists of “cleavage fragments” or of asbestos fibers.
Most cleavage fragments of the asbestos minerals are easily distinguishable from true asbestos fibers. This is because true cleavage fragments usually have larger diameters than 1 µm. Internal structure of particles larger than this usually shows them to have no internal fibrillar structure. In addition, cleavage fragments of the monoclinic amphiboles show inclined extinction under crossed polars with no compensator. Asbestos fibers usually show extinction at zero degrees or ambiguous extinction if any at all. Morphologically, the larger cleavage fragments are obvious by their blunt or stepped ends showing prismatic habit. Also, they tend to be acicular rather than filiform.
Where the particles are less than 1 µm in diameter and have an aspect ratio greater than or equal to 3:1, it is recommended that the sample be analyzed by SEM or TEM if there is any question whether the fibers are cleavage fragments or asbestiform particles.
Care must be taken when analyzing by electron microscopy because the interferences are different from those in light microscopy and may structurally be very similar to asbestos. The classic interference is between anthophyllite and biopyribole or intermediate fiber. Use the same morphological clues for electron microscopy as are used for light microscopy, e.g. fibril splitting, internal longitudinal striation, fraying, curvature, etc.
(1) Gross examination:
Examine the sample, preferably in the glass vial. Determine the presence of any obvious fibrous component. Estimate a percentage based on previous experience and current observation. Determine whether any pre- preparation is necessary. Determine the number of phases present. This step may be carried out or augmented by observation at 6 to 40 × under a stereo microscope.
(2) After performing any necessary pre-preparation, prepare slides of each phase as described above. Two preparations of the same phase in the same index medium can be made side-by-side on the same glass for convenience. Examine with the polarizing stereo microscope. Estimate the percentage of asbestos based on the amount of birefringent fiber present.
(3) Examine the slides on the phase-polar microscopes at magnifications of 160 and 400 × . Note the morphology of the fibers. Long, thin, very straight fibers with little curvature are indicative of fibers from the amphibole family. Curved, wavy fibers are usually indicative of chrysotile. Estimate the percentage of asbestos on the phase-polar microscope under conditions of crossed polars and a gypsum plate. Fibers smaller than 1.0 µm in thickness must be identified by inference to the presence of larger, identifiable fibers and morphology. If no larger fibers are visible, electron microscopy should be performed. At this point, only a tentative identification can be made. Full identification must be made with dispersion microscopy. Details of the tests are included in the appendices.
(4) Once fibers have been determined to be present, they must be identified. Adjust the microscope for dispersion mode and observe the fibers. The microscope has a rotating stage, one polarizing element, and a system for generating dark-field dispersion microscopy (see Section 4.6. of this appendix). Align a fiber with its length parallel to the polarizer and note the color of the Becke lines. Rotate the stage to bring the fiber length perpendicular to the polarizer and note the color. Repeat this process for every fiber or fiber bundle examined. The colors must be consistent with the colors generated by standard asbestos reference materials for a positive identification. In n = 1.550, amphiboles will generally show a yellow to straw-yellow color indicating that the fiber indices of refraction are higher than the liquid. If long, thin fibers are noted and the colors are yellow, prepare further slides as above in the suggested matching liquids listed below:
Type of asbestos | Index of refraction |
---|---|
Chrysotile | n = 1.550. |
Amosite | n = 1.670 or 1.680. |
Crocidolite | n = 1.690. |
Anthophyllite | n = 1.605 and 1.620. |
Tremolite | n = 1.605 and 1.620. |
Actinolite | n = 1.620. |
Where more than one liquid is suggested, the first is preferred; however, in some cases this liquid will not give good dispersion color. Take care to avoid interferences in the other liquid; e.g., wollastonite in n = 1.620 will give the same colors as tremolite. In n = 1.605 wollastonite will appear yellow in all directions. Wollastonite may be determined under crossed polars as it will change from blue to yellow as it is rotated along its fiber axis by tapping on the cover slip. Asbestos minerals will not change in this way.
Determination of the angle of extinction may, when present, aid in the determination of anthophyllite from tremolite. True asbestos fibers usually have 0° extinction or ambiguous extinction, while cleavage fragments have more definite extinction.
Continue analysis until both preparations have been examined and all present species of asbestos are identified. If there are no fibers present, or there is less than 0.1% present, end the analysis with the minimum number of slides (2).
(5) Some fibers have a coating on them which makes dispersion microscopy very difficult or impossible. Becke line analysis or electron microscopy may be performed in those cases. Determine the percentage by light microscopy. TEM analysis tends to overestimate the actual percentage present.
(6) Percentage determination is an estimate of occluded area, tempered by gross observation. Gross observation information is used to make sure that the high magnification microscopy does not greatly over- or under- estimate the amount of fiber present. This part of the analysis requires a great deal of experience. Satisfactory models for asbestos content analysis have not yet been developed, although some models based on metallurgical grain-size determination have found some utility. Estimation is more easily handled in situations where the grain sizes visible at about 160 × are about the same and the sample is relatively homogeneous.
View all of the area under the cover slip to make the percentage determination. View the fields while moving the stage, paying attention to the clumps of material. These are not usually the best areas to perform dispersion microscopy because of the interference from other materials. But, they are the areas most likely to represent the accurate percentage in the sample. Small amounts of asbestos require slower scanning and more frequent analysis of individual fields.
Report the area occluded by asbestos as the concentration. This estimate does not generally take into consideration the difference in density of the different species present in the sample. For most samples this is adequate. Simulation studies with similar materials must be carried out to apply microvisual estimation for that purpose and is beyond the scope of this procedure.
(7) Where successive concentrations have been made by chemical or physical means, the amount reported is the percentage of the material in the “as submitted” or original state. The percentage determined by microscopy is multiplied by the fractions remaining after pre-preparation steps to give the percentage in the original sample. For example:
The reported result is:
(8) Report the percent and type of asbestos present. For samples where asbestos was identified, but is less than 1.0%, report “Asbestos present, less than 1.0%.” There must have been at least two observed fibers or fiber bundles in the two preparations to be reported as present. For samples where asbestos was not seen, report as “None Detected.”
Because of the subjective nature of asbestos analysis, certain concepts and procedures need to be discussed in more depth. This information will help the analyst understand why some of the procedures are carried out the way they are.
Light is electromagnetic energy. It travels from its source in packets called quanta. It is instructive to consider light as a plane wave. The light has a direction of travel. Perpendicular to this and mutually perpendicular to each other, are two vector components. One is the magnetic vector and the other is the electric vector. We shall only be concerned with the electric vector. In this description, the interaction of the vector and the mineral will describe all the observable phenomena. From a light source such a microscope illuminator, light travels in all different direction from the filament.
In any given direction away from the filament, the electric vector is perpendicular to the direction of travel of a light ray. While perpendicular, its orientation is random about the travel axis. If the electric vectors from all the light rays were lined up by passing the light through a filter that would only let light rays with electric vectors oriented in one direction pass, the light would then be POLARIZED.
Polarized light interacts with matter in the direction of the electric vector. This is the polarization direction. Using this property it is possible to use polarized light to probe different materials and identify them by how they interact with light.
The speed of light in a vacuum is a constant at about 2.99 × 10
Materials are either amorphous or crystalline. The difference between these two descriptions depends on the positions of the atoms in them. The atoms in amorphous materials are randomly arranged with no long range order. An example of an amorphous material is glass. The atoms in crystalline materials, on the other hand, are in regular arrays and have long range order. Most of the atoms can be found in highly predictable locations. Examples of crystalline material are salt, gold, and the asbestos minerals.
It is beyond the scope of this method to describe the different types of crystalline materials that can be found, or the full description of the classes into which they can fall. However, some general crystallography is provided below to give a foundation to the procedures described.
With the exception of anthophyllite, all the asbestos minerals belong to the monoclinic crystal type. The unit cell is the basic repeating unit of the crystal and for monoclinic crystals can be described as having three unequal sides, two 90° angles and one angle not equal to 90°. The orthorhombic group, of which anthophyllite is a member has three unequal sides and three 90° angles. The unequal sides are a consequence of the complexity of fitting the different atoms into the unit cell. Although the atoms are in a regular array, that array is not symmetrical in all directions. There is long range order in the three major directions of the crystal. However, the order is different in each of the three directions. This has the effect that the index of refraction is different in each of the three directions. Using polarized light, we can investigate the index of refraction in each of the directions and identify the mineral or material under investigation. The indices α, β, and γ are used to identify the lowest, middle, and highest index of refraction respectively. The x direction, associated with α is called the fast axis. Conversely, the z direction is associated with γ and is the slow direction. Crocidolite has α along the fiber length making it “length-fast”. The remainder of the asbestos minerals have the γ axis along the fiber length. They are called “length-slow”. This orientation to fiber length is used to aid in the identification of asbestos.
Polarized light microscopy as described in this section uses the phase-polar microscope described in Section 3.2. A phase contrast microscope is fitted with two polarizing elements, one below and one above the sample. The polarizers have their polarization directions at right angles to each other. Depending on the tests performed, there may be a compensator between these two polarizing elements. Light emerging from a polarizing element has its electric vector pointing in the polarization direction of the element. The light will not be subsequently transmitted through a second element set at a right angle to the first element. Unless the light is altered as it passes from one element to the other, there is no transmission of light.
Crystals which have different crystal regularity in two or three main directions are said to be anisotropic. They have a different index of refraction in each of the main directions. When such a crystal is inserted between the crossed polars, the field of view is no longer dark but shows the crystal in color. The color depends on the properties of the crystal. The light acts as if it travels through the crystal along the optical axes. If a crystal optical axis were lined up along one of the polarizing directions (either the polarizer or the analyzer) the light would appear to travel only in that direction, and it would blink out or go dark. The difference in degrees between the fiber direction and the angle at which it blinks out is called the angle of extinction. When this angle can be measured, it is useful in identifying the mineral. The procedure for measuring the angle of extinction is to first identify the polarization direction in the microscope. A commercial alignment slide can be used to establish the polarization directions or use anthophyllite or another suitable mineral. This mineral has a zero degree angle of extinction and will go dark to extinction as it aligns with the polarization directions. When a fiber of anthophyllite has gone to extinction, align the eyepiece reticle or graticule with the fiber so that there is a visual cue as to the direction of polarization in the field of view. Tape or otherwise secure the eyepiece in this position so it will not shift.
After the polarization direction has been identified in the field of view, move the particle of interest to the center of the field of view and align it with the polarization direction. For fibers, align the fiber along this direction. Note the angular reading of the rotating stage. Looking at the particle, rotate the stage until the fiber goes dark or “blinks out”. Again note the reading of the stage. The difference in the first reading and the second is an angle of extinction.
The angle measured may vary as the orientation of the fiber changes about its long axis. Tables of mineralogical data usually report the maximum angle of extinction. Asbestos forming minerals, when they exhibit an angle of extinction, usually do show an angle of extinction close to the reported maximum, or as appropriate depending on the substitution chemistry.
When the optical axes of a crystal are not lined up along one of the polarizing directions (either the polarizer or the analyzer) part of the light travels along one axis and part travels along the other visible axis. This is characteristic of birefringent materials.
The color depends on the difference of the two visible indices of refraction and the thickness of the crystal. The maximum difference available is the difference between the α and the γ axes. This maximum difference is usually tabulated as the birefringence of the crystal.
For this test, align the fiber at 45° to the polarization directions in order to maximize the contribution to each of the optical axes. The colors seen are called retardation colors. They arise from the recombination of light which has traveled through the two separate directions of the crystal. One of the rays is retarded behind the other since the light in that direction travels slower. On recombination, some of the colors which make up white light are enhanced by constructive interference and some are suppressed by destructive interference. The result is a color dependent on the difference between the indices and the thickness of the crystal. The proper colors, thicknesses, and retardations are shown on a Michel-Levy chart. The three items, retardation, thickness and birefringence are related by the following relationship:
Examination of the equation for asbestos minerals reveals that the visible colors for almost all common asbestos minerals and fiber sizes are shades of gray and black. The eye is relatively poor at discriminating different shades of gray. It is very good at discriminating different colors. In order to compensate for the low retardation, a compensator is added to the light train between the polarization elements. The compensator used for this test is a gypsum plate of known thickness and birefringence. Such a compensator when oriented at 45° to the polarizer direction, provides a retardation of 530 nm of the 530 nm wavelength color. This enhances the red color and gives the background a characteristic red to red-magenta color. If this “full-wave” compensator is in place when the asbestos preparation is inserted into the light train, the colors seen on the fibers are quite different. Gypsum, like asbestos has a fast axis and a slow axis. When a fiber is aligned with its fast axis in the same direction as the fast axis of the gypsum plate, the ray vibrating in the slow direction is retarded by both the asbestos and the gypsum. This results in a higher retardation than would be present for either of the two minerals. The color seen is a second order blue. When the fiber is rotated 90° using the rotating stage, the slow direction of the fiber is now aligned with the fast direction of the gypsum and the fast direction of the fiber is aligned with the slow direction of the gypsum. Thus, one ray vibrates faster in the fast direction of the gypsum, and slower in the slow direction of the fiber; the other ray will vibrate slower in the slow direction of the gypsum and faster in the fast direction of the fiber. In this case, the effect is subtractive and the color seen is a first order yellow. As long as the fiber thickness does not add appreciably to the color, the same basic colors will be seen for all asbestos types except crocidolite. In crocidolite the colors will be weaker, may be in the opposite directions, and will be altered by the blue absorption color natural to crocidolite. Hundreds of other materials will give the same colors as asbestos, and therefore, this test is not definitive for asbestos. The test is useful in discriminating against fiberglass or other amorphous fibers such as some synthetic fibers. Certain synthetic fibers will show retardation colors different than asbestos; however, there are some forms of polyethylene and aramid which will show morphology and retardation colors similar to asbestos minerals. This test must be supplemented with a positive identification test when birefringent fibers are present which can not be excluded by morphology. This test is relatively ineffective for use on fibers less than 1 µm in diameter. For positive confirmation TEM or SEM should be used if no larger bundles or fibers are visible.
Dispersion microscopy or dispersion staining is the method of choice for the identification of asbestos in bulk materials. Becke line analysis is used by some laboratories and yields the same results as does dispersion staining for asbestos and can be used in lieu of dispersion staining. Dispersion staining is performed on the same platform as the phase-polar analysis with the analyzer and compensator removed. One polarizing element remains to define the direction of the light so that the different indices of refraction of the fibers may be separately determined. Dispersion microscopy is a dark-field technique when used for asbestos. Particles are imaged with scattered light. Light which is unscattered is blocked from reaching the eye either by the back field image mask in a McCrone objective or a back field image mask in the phase condenser. The most convenient method is to use the rotating phase condenser to move an oversized phase ring into place. The ideal size for this ring is for the central disk to be just larger than the objective entry aperture as viewed in the back focal plane. The larger the disk, the less scattered light reaches the eye. This will have the effect of diminishing the intensity of dispersion color and will shift the actual color seen. The colors seen vary even on microscopes from the same manufacturer. This is due to the different bands of wavelength exclusion by different mask sizes. The mask may either reside in the condenser or in the objective back focal plane. It is imperative that the analyst determine by experimentation with asbestos standards what the appropriate colors should be for each asbestos type. The colors depend also on the temperature of the preparation and the exact chemistry of the asbestos. Therefore, some slight differences from the standards should be allowed. This is not a serious problem for commercial asbestos uses. This technique is used for identification of the indices of refraction for fibers by recognition of color. There is no direct numerical readout of the index of refraction. Correlation of color to actual index of refraction is possible by referral to published conversion tables. This is not necessary for the analysis of asbestos. Recognition of appropriate colors along with the proper morphology are deemed sufficient to identify the commercial asbestos minerals. Other techniques including SEM, TEM, and XRD may be required to provide additional information in order to identify other types of asbestos.
Make a preparation in the suspected matching high dispersion oil, e.g., n = 1.550 for chrysotile. Perform the preliminary tests to determine whether the fibers are birefringent or not. Take note of the morphological character. Wavy fibers are indicative of chrysotile while long, straight, thin, frayed fibers are indicative of amphibole asbestos. This can aid in the selection of the appropriate matching oil. The microscope is set up and the polarization direction is noted as in Section 4.4. Align a fiber with the polarization direction. Note the color. This is the color parallel to the polarizer. Then rotate the fiber rotating the stage 90° so that the polarization direction is across the fiber. This is the perpendicular position. Again note the color. Both colors must be consistent with standard asbestos minerals in the correct direction for a positive identification of asbestos. If only one of the colors is correct while the other is not, the identification is not positive. If the colors in both directions are bluish-white, the analyst has chosen a matching index oil which is higher than the correct matching oil, e.g. the analyst has used n = 1.620 where chrysotile is present. The next lower oil (Section 3.5.) should be used to prepare another specimen. If the color in both directions is yellow-white to straw-yellow-white, this indicates that the index of the oil is lower than the index of the fiber, e.g. the preparation is in n = 1.550 while anthophyllite is present. Select the next higher oil (Section 3.5.) and prepare another slide. Continue in this fashion until a positive identification of all asbestos species present has been made or all possible asbestos species have been ruled out by negative results in this test. Certain plant fibers can have similar dispersion colors as asbestos. Take care to note and evaluate the morphology of the fibers or remove the plant fibers in pre- preparation. Coating material on the fibers such as carbonate or vinyl may destroy the dispersion color. Usually, there will be some outcropping of fiber which will show the colors sufficient for identification. When this is not the case, treat the sample as described in Section 3.3. and then perform dispersion staining. Some samples will yield to Becke line analysis if they are coated or electron microscopy can be used for identification.
5.1. Crane, D.T., Asbestos in Air, OSHA method ID160, Revised November 1992.
5.2. Ford, W.E., Dana's Textbook of Mineralogy; Fourth Ed.; John Wiley and Son, New York, 1950, p. vii.
5.3. Selikoff,.I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 3,20.
5.4. Women Inspectors of Factories. Annual Report for 1898, H.M. Statistical Office, London, p. 170 (1898).
5.5. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 26,30.
5.6. Campbell, W.J., et al, Selected Silicate Minerals and Their Asbestiform Varieties, United States Department of the Interior, Bureau of Mines, Information Circular 8751, 1977.
5.7. Asbestos, Code of Federal Regulations, 29 CFR 1910.1001 and 29 CFR 1926.58.
5.8. National Emission Standards for Hazardous Air Pollutants; Asbestos NESHAP Revision,
5.9. Ross, M. The Asbestos Minerals: Definitions, Description, Modes of Formation, Physical and Chemical Properties and Health Risk to the Mining Community, Nation Bureau of Standards Special Publication, Washington, DC, 1977.
5.10. Lilis, R., Fibrous Zeolites and Endemic Mesothelioma in Cappadocia, Turkey, J. Occ Medicine, 1981, 23,(8),548-550.
5.11. Occupational Exposure to Asbestos—1972, U.S. Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, HSM-72-10267.
5.12. Campbell, W.J., et al, Relationship of Mineral Habit to Size Characteristics for Tremolite Fragments and Fibers, United States Department of the Interior, Bureau of Mines, Information Circular 8367, 1979.
5.13. Mefford, D., DCM Laboratory, Denver, private communication, July 1987.
5.14. Deer, W.A., Howie, R.A., Zussman, J., Rock Forming Minerals, Longman, Thetford, UK, 1974.
5.15. Kerr, P.F., Optical Mineralogy; Third Ed. McGraw-Hill, New York, 1959.
5.16. Veblen, D.R. (Ed.), Amphiboles and Other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy, Vol 9A, Michigan, 1982, pp 1-102.
5.17. Dixon, W.C., Applications of Optical Microscopy in the Analysis of Asbestos and Quartz, ACS Symposium Series, No. 120, Analytical Techniques in Occupational Health Chemistry, 1979.
5.18. Polarized Light Microscopy, McCrone Research Institute, Chicago, 1976.
5.19. Asbestos Identification, McCrone Research Institute, G & G printers, Chicago, 1987.
5.20. McCrone, W.C., Calculation of Refractive Indices from Dispersion Staining Data, The Microscope, No 37, Chicago, 1989.
5.21. Levadie, B. (Ed.), Asbestos and Other Health Related Silicates, ASTM Technical Publication 834, ASTM, Philadelphia 1982.
5.22. Steel, E. and Wylie, A., Riordan, P.H. (Ed.), Mineralogical Characteristics of Asbestos, Geology of Asbestos Deposits, pp. 93-101, SME-AIME, 1981.
5.23. Zussman, J., The Mineralogy of Asbestos, Asbestos: Properties, Applications and Hazards, pp. 45-67 Wiley, 1979.
§ 1910.1002 - Coal tar pitch volatiles; interpretation of term.
As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the distillation residues of coal, petroleum (excluding asphalt), wood, and other organic matter. Asphalt (CAS 8052-42-4, and CAS 64742-93-4) is not covered under the “coal tar pitch volatiles” standard.
§ 1910.1003 - 13 Carcinogens (4-Nitrobiphenyl, etc.).
(a) Scope and application. (1) This section applies to any area in which the 13 carcinogens addressed by this section are manufactured, processed, repackaged, released, handled, or stored, but shall not apply to transshipment in sealed containers, except for the labeling requirements under paragraphs (e)(2), (3) and (4) of this section. The 13 carcinogens are the following:
(2) This section shall not apply to the following:
(i) Solid or liquid mixtures containing less than 0.1 percent by weight or volume of 4-Nitrobiphenyl; methyl chloromethyl ether; bis-chloromethyl ether; beta-Naphthylamine; benzidine or 4-Aminodiphenyl; and
(ii) Solid or liquid mixtures containing less than 1.0 percent by weight or volume of alpha-Naphthylamine; 3,′-Dichlorobenzidine (and its salts); Ethyleneimine; beta-Propiolactone; 2-Acetylaminofluorene; 4-Dimethylaminoazobenzene, or N-Nitrosodimethylamine.
(b) Definitions. For the purposes of this section:
Absolute filter is one capable of retaining 99.97 percent of a mono disperse aerosol of 0.3 µm particles.
Authorized employee means an employee whose duties require him to be in the regulated area and who has been specifically assigned by the employer.
Clean change room means a room where employees put on clean clothing and/or protective equipment in an environment free of the 13 carcinogens addressed by this section. The clean change room shall be contiguous to and have an entry from a shower room, when the shower room facilities are otherwise required in this section.
Closed system means an operation involving a carcinogen addressed by this section where containment prevents the release of the material into regulated areas, non-regulated areas, or the external environment.
Decontamination means the inactivation of a carcinogen addressed by this section or its safe disposal.
Director means the Director, National Institute for Occupational Safety and Health, or any person directed by him or the Secretary of Health and Human Services to act for the Director.
Disposal means the safe removal of the carcinogens addressed by this section from the work environment.
Emergency means an unforeseen circumstance or set of circumstances resulting in the release of a carcinogen addressed by this section that may result in exposure to or contact with the material.
External environment means any environment external to regulated and nonregulated areas.
Isolated system means a fully enclosed structure other than the vessel of containment of a carcinogen addressed by this section that is impervious to the passage of the material and would prevent the entry of the carcinogen addressed by this section into regulated areas, nonregulated areas, or the external environment, should leakage or spillage from the vessel of containment occur.
Laboratory-type hood is a device enclosed on the three sides and the top and bottom, designed and maintained so as to draw air inward at an average linear face velocity of 150 feet per minute with a minimum of 125 feet per minute; designed, constructed, and maintained in such a way that an operation involving a carcinogen addressed by this section within the hood does not require the insertion of any portion of any employee's body other than his hands and arms.
Nonregulated area means any area under the control of the employer where entry and exit is neither restricted nor controlled.
Open-vessel system means an operation involving a carcinogen addressed by this section in an open vessel that is not in an isolated system, a laboratory-type hood, nor in any other system affording equivalent protection against the entry of the material into regulated areas, non-regulated areas, or the external environment.
Protective clothing means clothing designed to protect an employee against contact with or exposure to a carcinogen addressed by this section.
Regulated area means an area where entry and exit is restricted and controlled.
(c) Requirements for areas containing a carcinogen addressed by this section. A regulated area shall be established by an employer where a carcinogen addressed by this section is manufactured, processed, used, repackaged, released, handled or stored. All such areas shall be controlled in accordance with the requirements for the following category or categories describing the operation involved:
(1) Isolated systems. Employees working with a carcinogen addressed by this section within an isolated system such as a “glove box” shall wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
(2) Closed system operation. (i) Within regulated areas where the carcinogens addressed by this section are stored in sealed containers, or contained in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens addressed by this section are contained within, access shall be restricted to authorized employees only.
(ii) Employees exposed to 4-Nitrobiphenyl; alpha-Naphthylamine; 3,′-Dichlorobenzidine (and its salts); beta-Naphthylamine; benzidine; 4-Aminodiphenyl; 2-Acetylaminofluorene; 4-Dimethylaminoazo-benzene; and N-Nitrosodimethylamine shall be required to wash hands, forearms, face, and neck upon each exit from the regulated areas, close to the point of exit, and before engaging in other activities.
(3) Open-vessel system operations. Open-vessel system operations as defined in paragraph (b)(13) of this section are prohibited.
(4) Transfer from a closed system, charging or discharging point operations, or otherwise opening a closed system. In operations involving “laboratory-type hoods,” or in locations where the carcinogens addressed by this section are contained in an otherwise “closed system,” but is transferred, charged, or discharged into other normally closed containers, the provisions of this paragraph shall apply.
(i) Access shall be restricted to authorized employees only.
(ii) Each operation shall be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air shall not be discharged to regulated areas, nonregulated areas or the external environment unless decontaminated. Clean makeup air shall be introduced in sufficient volume to maintain the correct operation of the local exhaust system.
(iii) Employees shall be provided with, and required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
(iv) Employers must provide each employee engaged in handling operations involving the carcinogens 4-Nitrobiphenyl, alpha-Naphthylamine, 3,3′-Dichlorobenzidine (and its salts), beta-Naphthylamine, Benzidine, 4-Aminodiphenyl, 2-Acetylaminofluorene, 4-Dimethylaminoazo-benzene, and N-Nitrosodimethylamine, addressed by this section, with, and ensure that each of these employees wears and uses, a NIOSH-certified air-purifying, half-mask respirator with particulate filters. Employers also must provide each employee engaged in handling operations involving the carcinogens methyl chloromethyl ether, bis-Chloromethyl ether, Ethyleneimine, and beta-Propiolactone, addressed by this section, with, and ensure that each of these employees wears and uses any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode, or any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus. Employers may substitute a respirator affording employees higher levels of protection than these respirators.
(v) Prior to each exit from a regulated area, employees shall be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers shall be identified, as required under paragraph (e) of this section.
(vi) Drinking fountains are prohibited in the regulated area.
(vii) Employees shall be required to wash hands, forearms, face, and neck on each exit from the regulated area, close to the point of exit, and before engaging in other activities and employees exposed to 4-Nitrobiphenyl; alpha-Naphthylamine; 3,′-Dichlorobenzidine (and its salts); beta-Naphthylamine; Benzidine; 4-Aminodiphenyl; 2-Acetylaminofluorene; 4-Dimethylaminoazo-benzene; and N-Nitrosodimethylamine shall be required to shower after the last exit of the day.
(5) Maintenance and decontamination activities. In cleanup of leaks of spills, maintenance, or repair operations on contaminated systems or equipment, or any operations involving work in an area where direct contact with a carcinogen addressed by this section could result, each authorized employee entering that area shall:
(i) Be provided with and required to wear clean, impervious garments, including gloves, boots, and continuous-air supplied hood in accordance with § 1910.134;
(ii) Be decontaminated before removing the protective garments and hood;
(iii) Be required to shower upon removing the protective garments and hood.
(d) General regulated area requirements—(1) Respiratory program. The employer must implement a respiratory protection program in accordance with § 1910.134 (b), (c), (d) (except (d)(1)(iii) and (iv), and (d)(3)), and (e) through (m), which covers each employee required by this section to use a respirator.
(2) Emergencies. In an emergency, immediate measures including, but not limited to, the requirements of paragraphs (d)(2) (i) through (v) of this section shall be implemented.
(i) The potentially affected area shall be evacuated as soon as the emergency has been determined.
(ii) Hazardous conditions created by the emergency shall be eliminated and the potentially affected area shall be decontaminated prior to the resumption of normal operations.
(iii) Special medical surveillance by a physician shall be instituted within 24 hours for employees present in the potentially affected area at the time of the emergency.
(iv) Where an employee has a known contact with a carcinogen addressed by this section, such employee shall be required to shower as soon as possible, unless contraindicated by physical injuries.
(v) Emergency deluge showers and eyewash fountains supplied with running potable water shall be located near, within sight of, and on the same level with locations where a direct exposure to Ethyleneimine or beta-Propiolactone only would be most likely as a result of equipment failure or improper work practice.
(3) Hygiene facilities and practices. (i) Storage or consumption of food, storage or use of containers of beverages, storage or application of cosmetics, smoking, storage of smoking materials, tobacco products or other products for chewing, or the chewing of such products are prohibited in regulated areas.
(ii) Where employees are required by this section to wash, washing facilities shall be provided in accordance with § 1910.141(d) (1) and (2) (ii) through (vii).
(iii) Where employees are required by this section to shower, shower facilities shall be provided in accordance with § 1910.141(d)(3).
(iv) Where employees wear protective clothing and equipment, clean change rooms shall be provided for the number of such employees required to change clothes, in accordance with § 1910.141(e).
(v) Where toilets are in regulated areas, such toilets shall be in a separate room.
(4) Contamination control. (i) Except for outdoor systems, regulated areas shall be maintained under pressure negative with respect to nonregulated areas. Local exhaust ventilation may be used to satisfy this requirement. Clean makeup air in equal volume shall replace air removed.
(ii) Any equipment, material, or other item taken into or removed from a regulated area shall be done so in a manner that does not cause contamination in nonregulated areas or the external environment.
(iii) Decontamination procedures shall be established and implemented to remove carcinogens addressed by this section from the surfaces of materials, equipment, and the decontamination facility.
(iv) Dry sweeping and dry mopping are prohibited for 4-Nitrobiphenyl; alpha-Naphthylamine; 3,′-Dichlorobenzidine (and its salts); beta-Naphthylamine; Benzidine; 4-Aminodiphenyl; 2-Acetylaminofluorene; 4-Dimethylaminoazo-benzene and N-Nitrosodimethylamine.
(e) Communication of hazards—(1) Hazard communication. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for each carcinogen listed in paragraph (e)(1)(iv) of this section.
(ii) In classifying the hazards of carcinogens listed in paragraph (e)(1)(iv) of this section, at least the hazards listed in paragraph (e)(1)(iv) are to be addressed.
(iii) Employers shall include the carcinogens listed in paragraph (e)(1)(iv) of this section in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of the carcinogens listed in paragraph (e)(1)(iv) and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (e)(4) of this section.
(iv) List of Carcinogens:
(A) 4-Nitrobiphenyl: Cancer.
(B) alpha-Naphthylamine: Cancer; skin irritation; and acute toxicity effects.
(C) Methyl chloromethyl ether: Cancer; skin, eye and respiratory effects; acute toxicity effects; and flammability.
(D) 3,3′-Dichlorobenzidine (and its salts): Cancer and skin sensitization.
(E) bis-Chloromethyl ether: Cancer; skin, eye, and respiratory tract effects; acute toxicity effects; and flammability.
(F) beta-Naphthylamine: Cancer and acute toxicity effects.
(G) Benzidine: Cancer and acute toxicity effects.
(H) 4-Aminodiphenyl: Cancer.
(I) Ethyleneimine: Cancer; mutagenicity; skin and eye effects; liver effects; kidney effects; acute toxicity effects; and flammability.
(J) beta-Propiolactone: Cancer; skin irritation; eye effects; and acute toxicity effects.
(K) 2-Acetylaminofluorene: Cancer.
(L) 4-Dimethylaminoazo-benzene: Cancer; skin effects; and respiratory tract irritation.
(M) N-Nitrosodimethylamine: Cancer; liver effects; and acute toxicity effects.
(2) Signs. (i) The employer shall post entrances to regulated areas with signs bearing the legend:
(ii) The employer shall post signs at entrances to regulated areas containing operations covered in paragraph (c)(5) of this section. The signs shall bear the legend:
(iii) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (e)(2)(i) of this section:
(iv) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (e)(2)(ii) of this section:
(v) Appropriate signs and instructions shall be posted at the entrance to, and exit from, regulated areas, informing employees of the procedures that must be followed in entering and leaving a regulated area.
(3) Prohibited statements. No statement shall appear on or near any required sign, label, or instruction that contradicts or detracts from the effect of any required warning, information, or instruction.
(4) Training and indoctrination. (i) Each employee prior to being authorized to enter a regulated area, shall receive a training and indoctrination program including, but not necessarily limited to:
(A) The nature of the carcinogenic hazards of a carcinogen addressed by this section, including local and systemic toxicity;
(B) The specific nature of the operation involving a carcinogen addressed by this section that could result in exposure;
(C) The purpose for and application of the medical surveillance program, including, as appropriate, methods of self-examination;
(D) The purpose for and application of decontamination practices and purposes;
(E) The purpose for and significance of emergency practices and procedures;
(F) The employee's specific role in emergency procedures;
(G) Specific information to aid the employee in recognition and evaluation of conditions and situations which may result in the release of a carcinogen addressed by this section;
(H) The purpose for and application of specific first aid procedures and practices;
(I) A review of this section at the employee's first training and indoctrination program and annually thereafter.
(ii) Specific emergency procedures shall be prescribed, and posted, and employees shall be familiarized with their terms, and rehearsed in their application.
(iii) All materials relating to the program shall be provided upon request to authorized representatives of the Assistant Secretary and the Director.
(f) [Reserved]
(g) Medical surveillance. At no cost to the employee, a program of medical surveillance shall be established and implemented for employees considered for assignment to enter regulated areas, and for authorized employees.
(1) Examinations. (i) Before an employee is assigned to enter a regulated area, a preassignment physical examination by a physician shall be provided. The examination shall include the personal history of the employee, family and occupational background, including genetic and environmental factors.
(ii) Authorized employees shall be provided periodic physical examinations, not less often than annually, following the preassignment examination.
(iii) In all physical examinations, the examining physician shall consider whether there exist conditions of increased risk, including reduced immunological competence, those undergoing treatment with steroids or cytotoxic agents, pregnancy, and cigarette smoking.
(2) Records. (i) Employers of employees examined pursuant to this paragraph shall cause to be maintained complete and accurate records of all such medical examinations. Records shall be maintained for the duration of the employee's employment.
(ii) Records required by this paragraph shall be provided upon request to employees, designated representatives, and the Assistant Secretary in accordance with 29 CFR 1910.1020 (a) through (e) and (g) through (i). These records shall also be provided upon request to the Director.
(iii) Any physician who conducts a medical examination required by this paragraph shall furnish to the employer a statement of the employee's suitability for employment in the specific exposure.
§ 1910.1006 - Methyl chloromethyl ether.
See § 1910.1003, 13 carcinogens.
§ 1910.1007 - 3,′-Dichlorobenzidine (and its salts).
See § 1910.1003, 13 carcinogens.
§ 1910.1015 - 4-Dimethylaminoazobenzene.
See § 1910.1003, 13 carcinogens.
§ 1910.1017 - Vinyl chloride.
(a) Scope and application. (1) This section includes requirements for the control of employee exposure to vinyl chloride (chloroethene), Chemical Abstracts Service Registry No. 75014.
(2) This section applies to the manufacture, reaction, packaging, repackaging, storage, handling or use of vinyl chloride or polyvinyl chloride, but does not apply to the handling or use of fabricated products made of polyvinyl chloride.
(3) This section applies to the transportation of vinyl chloride or polyvinyl chloride except to the extent that the Department of Transportation may regulate the hazards covered by this section.
(b) Definitions—(1) Action level means a concentration of vinyl chloride of 0.5 ppm averaged over an 8-hour work day.
(2) Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or his designee.
(3) Authorized person means any person specifically authorized by the employer whose duties require him to enter a regulated area or any person entering such an area as a designated representative of employees for the purpose of exercising an opportunity to observe monitoring and measuring procedures.
(4) Director means the Director, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or his designee.
(5) Emergency means any occurrence such as, but not limited to, equipment failure, or operation of a relief device which is likely to, or does, result in massive release of vinyl chloride.
(6) Fabricated product means a product made wholly or partly from polyvinyl chloride, and which does not require further processing at temperatures, and for times, sufficient to cause mass melting of the polyvinyl chloride resulting in the release of vinyl chloride.
(7) Hazardous operation means any operation, procedure, or activity where a release of either vinyl chloride liquid or gas might be expected as a consequence of the operation or because of an accident in the operation, which would result in an employee exposure in excess of the permissible exposure limit.
(8) OSHA Area Director means the Director for the Occupational Safety and Health Administration Area Office having jurisdiction over the geographic area in which the employer's establishment is located.
(9) Polyvinyl chloride means polyvinyl chloride homopolymer or copolymer before such is converted to a fabricated product.
(10) Vinyl chloride means vinyl chloride monomer.
(c) Permissible exposure limit. (1) No employee may be exposed to vinyl chloride at concentrations greater than 1 ppm averaged over any 8-hour period, and
(2) No employee may be exposed to vinyl chloride at concentrations greater than 5 ppm averaged over any period not exceeding 15 minutes.
(3) No employee may be exposed to vinyl chloride by direct contact with liquid vinyl chloride.
(d) Monitoring. (1) A program of initial monitoring and measurement shall be undertaken in each establishment to determine if there is any employee exposed, without regard to the use of respirators, in excess of the action level.
(2) Where a determination conducted under paragraph (d)(1) of this section shows any employee exposures, without regard to the use of respirators, in excess of the action level, a program for determining exposures for each such employee shall be established. Such a program:
(i) Must be repeated at least quarterly for any employee exposed, without regard to the use of respirators, in excess of the permissible exposure limit.
(ii) Must be repeated not less than every 6 months for any employee exposed without regard to the use of respirators, at or above the action level.
(iii) May be discontinued for any employee only when at least two consecutive monitoring determinations, made not less than 5 working days apart, show exposures for that employee at or below the action level.
(3) Whenever there has been a production, process or control change which may result in an increase in the release of vinyl chloride, or the employer has any other reason to suspect that any employee may be exposed in excess of the action level, a determination of employee exposure under paragraph (d)(1) of this section shall be performed.
(4) The method of monitoring and measurement shall have an accuracy (with a confidence level of 95 percent) of not less than plus or minus 50 percent from 0.25 through 0.5 ppm, plus or minus 35 percent from over 0.5 ppm through 1.0 ppm, and plus or minus 25 percent over 1.0 ppm. (Methods meeting these accuracy requirements are available in the “NIOSH Manual of Analytical Methods”).
(5) Employees or their designated representatives shall be afforded reasonable opportunity to observe the monitoring and measuring required by this paragraph.
(e) Regulated area. (1) A regulated area shall be established where:
(i) Vinyl chloride or polyvinyl chloride is manufactured, reacted, repackaged, stored, handled or used; and
(ii) Vinyl chloride concentrations are in excess of the permissible exposure limit.
(2) Access to regulated areas shall be limited to authorized persons.
(f) Methods of compliance. Employee exposures to vinyl chloride shall be controlled to at or below the permissible exposure limit provided in paragraph (c) of this section by engineering, work practice, and personal protective controls as follows:
(1) Feasible engineering and work practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit.
(2) Wherever feasible engineering and work practice controls which can be instituted immediately are not sufficient to reduce exposures to at or below the permissible exposure limit, they shall nonetheless be used to reduce exposures to the lowest practicable level, and shall be supplemented by respiratory protection in accordance with paragraph (g) of this section. A program shall be established and implemented to reduce exposures to at or below the permissible exposure limit, or to the greatest extent feasible, solely by means of engineering and work practice controls, as soon as feasible.
(3) Written plans for such a program shall be developed and furnished upon request for examination and copying to authorized representatives of the Assistant Secretary and the Director. Such plans must be updated at least annually.
(g) Respiratory protection—(1) General. For employees who use respirators required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph.
(2) Respirator program. The employer must implement a respiratory protection program in accordance § 1910.134 (b) through (d) (except (d)(1)(iii), and (d)(3)(iii)(B)(1) and (2)), and (f) through (m) which covers each employee required by this section to use a respirator.
(3) Respirator selection. (i) Employers must:
(A) Select, and provide to employees, the appropriate respirators specified in paragraph (d)(3)(i)(A) of 29 CFR 1910.134.
(B) Provide an organic vapor cartridge that has a service life of at least one hour when using a chemical cartridge respirator at vinyl chloride concentrations up to 10 ppm.
(C) Select a canister that has a service life of at least four hours when using a powered air-purifying respirator having a hood, helmet, or full or half facepiece, or a gas mask with a front-or back-mounted canister, at vinyl chloride concentrations up to 25 ppm.
(ii) When air-purifying respirators are used:
(A) Air-purifying canisters or cartridges must be replaced prior to the expiration of their service life or the end of the shift in which they are first used, whichever occurs first.
(B) A continuous-monitoring and alarm system must be provided when concentrations of vinyl chloride could reasonably exceed the allowable concentrations for the devices in use. Such a system must be used to alert employees when vinyl chloride concentrations exceed the allowable concentrations for the devices in use.
(h) Hazardous operations. (1) Employees engaged in hazardous operations, including entry of vessels to clean polyvinyl chloride residue from vessel walls, shall be provided and required to wear and use;
(i) Respiratory protection in accordance with paragraphs (c) and (g) of this section; and
(ii) Protective garments to prevent skin contact with liquid vinyl chloride or with polyvinyl chloride residue from vessel walls. The protective garments shall be selected for the operation and its possible exposure conditions.
(2) Protective garments shall be provided clean and dry for each use.
(i) Emergency situations. A written operational plan for emergency situations shall be developed for each facility storing, handling, or otherwise using vinyl chloride as a liquid or compressed gas. Appropriate portions of the plan shall be implemented in the event of an emergency. The plan shall specifically provide that:
(1) Employees engaged in hazardous operations or correcting situations of existing hazardous releases shall be equipped as required in paragraph (h) of this section;
(2) Other employees not so equipped shall evacuate the area and not return until conditions are controlled by the methods required in paragraph (f) of this section and the emergency is abated.
(j) Training. Each employee engaged in vinyl chloride or polyvinyl chloride operations shall be provided training in a program relating to the hazards of vinyl chloride and precautions for its safe use.
(1) The program shall include:
(i) The nature of the health hazard from chronic exposure to vinyl chloride including specifically the carcinogenic hazard;
(ii) The specific nature of operations which could result in exposure to vinyl chloride in excess of the permissible limit and necessary protective steps;
(iii) The purpose for, proper use, and limitations of respiratory protective devices;
(iv) The fire hazard and acute toxicity of vinyl chloride, and the necessary protective steps;
(v) The purpose for and a description of the monitoring program;
(vi) The purpose for, and a description of, the medical surveillance program;
(vii) Emergency procedures;
(viii) Specific information to aid the employee in recognition of conditions which may result in the release of vinyl chloride; and
(ix) A review of this standard at the employee's first training and indoctrination program, and annually thereafter.
(2) All materials relating to the program shall be provided upon request to the Assistant Secretary and the Director.
(k) Medical surveillance. A program of medical surveillance shall be instituted for each employee exposed, without regard to the use of respirators, to vinyl chloride in excess of the action level. The program shall provide each such employee with an opportunity for examinations and tests in accordance with this paragraph. All medical examinations and procedures shall be performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee.
(1) At the time of initial assignment, or upon institution of medical surveillance;
(i) A general physical examination shall be performed, with specific attention to detecting enlargement of liver, spleen or kidneys, or dysfunction in these organs, and for abnormalities in skin, connective tissues and the pulmonary system (See appendix A).
(ii) A medical history shall be taken, including the following topics:
(A) Alcohol intake;
(B) Past history of hepatitis;
(C) Work history and past exposure to potential hepatotoxic agents, including drugs and chemicals;
(D) Past history of blood transfusions; and
(E) Past history of hospitalizations.
(iii) A serum specimen shall be obtained and determinations made of:
(A) Total bilirubin;
(B) Alkaline phosphatase;
(C) Serum glutamic oxalacetic transaminase (SGOT);
(D) Serum glutamic pyruvic transaminase (SGPT); and
(E) Gamma glustamyl transpeptidase.
(2) Examinations must be provided in accordance with this paragraph at least annually.
(3) Each employee exposed to an emergency shall be afforded appropriate medical surveillance.
(4) A statement of each employee's suitability for continued exposure to vinyl chloride including use of protective equipment and respirators, shall be obtained from the examining physician promptly after any examination. A copy of the physician's statement shall be provided each employee.
(5) If any employee's health would be materially impaired by continued exposure, such employee shall be withdrawn from possible contact with vinyl chloride.
(6) Laboratory analyses for all biological specimens included in medical examination shall be performed by accredited laboratories.
(7) If the examining physician determines that alternative medical examinations to those required by paragraph (k)(1) of this section will provide at least equal assurance of detecting medical conditions pertinent to the exposure to vinyl chloride, the employer may accept such alternative examinations as meeting the requirements of paragraph (k)(1) of this section, if the employer obtains a statement from the examining physician setting forth the alternative examinations and the rationale for substitution. This statement shall be available upon request for examination and copying to authorized representatives of the Assistant Secretary and the Director.
(l) Communication of hazards—(1) Hazard communication—general. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for vinyl chloride and polyvinyl chloride.
(ii) In classifying the hazards of vinyl chloride at least the following hazards are to be addressed: Cancer; central nervous system effects; liver effects; blood effects; and flammability.
(iii) Employers shall include vinyl chloride in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of vinyl chloride and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (j) of this section.
(2) Signs. (i) The employer shall post entrances to regulated areas with legible signs bearing the legend:
(ii) The employer shall post signs at areas containing hazardous operations or where emergencies currently exist. The signs shall be legible and bear the legend:
(iii) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (l)(2)(i) of this section:
(iv) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (l)(2)(ii) of this section:
(3) Labels. (i) In addition to the other requirements in this paragraph (l), the employer shall ensure that labels for containers of polyvinyl chloride resin waste from reactors or other waste contaminated with vinyl chloride are legible and include the following information:
(ii) Prior to June 1, 2015, employers may include the following information on labels of containers of polyvinyl chloride resin waste from reactors or other waste contaminated with vinyl chloride in lieu of the labeling requirements in paragraphs (l)(3)(i) of this section:
(4) Prior to June 1, 2015, employers may include the following information for containers of polyvinyl chloride in lieu of the labeling requirements in paragraphs (l)(1)(i) of this section:
(5)(i) Prior to June 1, 2015, employers may include either the following information in either paragraph (l)(5)(i) or (l)(5)(ii) of this section on containers of vinyl chloride in lieu of the labeling requirements in paragraph (l)(1)(i) of this section:
(ii) In accordance with 49 CFR Parts 170-189, with the additional legend applied near the label or placard:
(6) No statement shall appear on or near any required sign, label, or instruction which contradicts or detracts from the effect of any required warning, information, or instruction.
(m) Records. (1) All records maintained in accordance with this section shall include the name of each employee where relevant.
(2) Records of required monitoring and measuring and medical records shall be provided upon request to employees, designated representatives, and the Assistant Secretary in accordance with 29 CFR 1910.1020 (a) through (e) and (g) through (i). These records shall be provided upon request to the Director. Authorized personnel rosters shall also be provided upon request to the Assistant Secretary and the Director.
(i) Monitoring and measuring records shall:
(A) State the date of such monitoring and measuring and the concentrations determined and identify the instruments and methods used;
(B) Include any additional information necessary to determine individual employee exposures where such exposures are determined by means other than individual monitoring of employees; and
(C) Be maintained for not less than 30 years.
(ii) [Reserved]
(iii) Medical records shall be maintained for the duration of the employment of each employee plus 20 years, or 30 years, whichever is longer.
(n) The employer must, within 15 working days after the receipt of the results of any monitoring performed under this section, notify each affected employee of these results and the steps being taken to reduce exposures within the permissible exposure limit either individually in writing or by posting the results in an appropriate location that is accessible to affected employees.
When required tests under paragraph (k)(1) of this section show abnormalities, the tests should be repeated as soon as practicable, preferably within 3 to 4 weeks. If tests remain abnormal, consideration should be given to withdrawal of the employee from contact with vinyl chloride, while a more comprehensive examination is made.
Additional tests which may be useful:
A. For kidney dysfunction: urine examination for albumin, red blood cells, and exfoliative abnormal cells.
B. Pulmonary system: Forced vital capacity, Forced expiratory volume at 1 second, and chest roentgenogram (posterior-anterior, 14 × 17 inches).
C. Additional serum tests: Lactic acid dehydrogenase, lactic acid dehydrogenase isoenzyme, protein determination, and protein electrophoresis.
D. For a more comprehensive examination on repeated abnormal serum tests: Hepatitis B antigen, and liver scanning.
§ 1910.1018 - Inorganic arsenic.
(a) Scope and application. This section applies to all occupational exposures to inorganic arsenic except that this section does not apply to employee exposures in agriculture or resulting from pesticide application, the treatment of wood with preservatives or the utilization of arsenically preserved wood.
(b) Definitions. Action level means a concentration of inorganic arsenic of 5 micrograms per cubic meter of air (5 µg/m
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Authorized person means any person specifically authorized by the employer whose duties require the person to enter a regulated area, or any person entering such an area as a designated representative of employees for the purpose of exercising the right to observe monitoring and measuring procedures under paragraph (e) of this section.
Director means the Director, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designee.
Inorganic arsenic means copper aceto- arsenite and all inorganic compounds containing arsenic except arsine, measured as arsenic (As).
(c) Permissible exposure limit. The employer shall assure that no employee is exposed to inorganic arsenic at concentrations greater than 10 micrograms per cubic meter of air (10 µg/m
(d) [Reserved]
(e) Exposure monitoring—(1) General. (i) Determinations of airborne exposure levels shall be made from air samples that are representative of each employee's exposure to inorganic arsenic over an eight (8) hour period.
(ii) For the purposes of this section, employee exposure is that exposure which would occur if the employee were not using a respirator.
(iii) The employer shall collect full shift (for at least 7 continuous hours) personal samples including at least one sample for each shift for each job classification in each work area.
(2) Initial monitoring. Each employer who has a workplace or work operation covered by this standard shall monitor each such workplace and work operation to accurately determine the airborne concentration of inorganic arsenic to which employees may be exposed.
(3) Frequency. (i) If the initial monitoring reveals employee exposure to be below the action level the measurements need not be repeated except as otherwise provided in paragraph (e)(4) of this section.
(ii) If the initial monitoring, required by this section, or subsequent monitoring reveals employee exposure to be above the permissible exposure limit, the employer shall repeat monitoring at least quarterly.
(iii) If the initial monitoring, required by this section, or subsequent monitoring reveals employee exposure to be above the action level and below the permissible exposure limit the employer shall repeat monitoring at least every six months.
(iv) The employer shall continue monitoring at the required frequency until at least two consecutive measurements, taken at least seven (7) days apart, are below the action level at which time the employer may discontinue monitoring for that employee until such time as any of the events in paragraph (e)(4) of this section occur.
(4) Additional monitoring. Whenever there has been a production, process, control or personal change which may result in new or additional exposure to inorganic arsenic, or whenever the employer has any other reason to suspect a change which may result in new or additional exposures to inorganic arsenic, additional monitoring which complies with paragraph (e) of this section shall be conducted.
(5) Employee notification. (i) The employer must, within 15 working days after the receipt of the results of any monitoring performed under this section, notify each affected employee of these results either individually in writing or by posting the results in an appropriate location that is accessible to affected employees.
(ii) Whenever the results indicate that the representative employee exposure exceeds the permissible exposure limit, the employer shall include in the written notice a statement that the permissible exposure limit was exceeded and a description of the corrective action taken to reduce exposure to or below the permissible exposure limit.
(6) Accuracy of measurement. (i) The employer shall use a method of monitoring and measurement which has an accuracy (with a confidence level of 95 percent) of not less than plus or minus 25 percent for concentrations of inorganic arsenic greater than or equal to 10 µg/m
(ii) The employer shall use a method of monitoring and measurement which has an accuracy (with confidence level of 95 percent) of not less than plus or minus 35 percent for concentrations of inorganic arsenic greater than 5 µg/m
(f) Regulated area—(1) Establishment. The employer shall establish regulated areas where worker exposures to inorganic arsenic, without regard to the use of respirators, are in excess of the permissible limit.
(2) Demarcation. Regulated areas shall be demarcated and segregated from the rest of the workplace in any manner that minimizes the number of persons who will be exposed to inorganic arsenic.
(3) Access. Access to regulated areas shall be limited to authorized persons or to persons otherwise authorized by the Act or regulations issued pursuant thereto to enter such areas.
(4) Provision of respirators. All persons entering a regulated area shall be supplied with a respirator, selected in accordance with paragraph (h)(2) of this section.
(5) Prohibited activities. The employer shall assure that in regulated areas, food or beverages are not consumed, smoking products, chewing tobacco and gum are not used and cosmetics are not applied, except that these activities may be conducted in the lunchrooms, change rooms and showers required under paragraph (m) of this section. Drinking water may be consumed in the regulated area.
(g) Methods of compliance—(1) Controls. (i) The employer shall institute at the earliest possible time but not later than December 31, 1979, engineering and work practice controls to reduce exposures to or below the permissible exposure limit, except to the extent that the employer can establish that such controls are not feasible.
(ii) Where engineering and work practice controls are not sufficient to reduce exposures to or below the permissible exposure limit, they shall nonetheless be used to reduce exposures to the lowest levels achievable by these controls and shall be supplemented by the use of respirators in accordance with paragraph (h) of this section and other necessary personal protective equipment. Employee rotation is not required as a control strategy before respiratory protection is instituted.
(2) Compliance Program. (i) The employer shall establish and implement a written program to reduce exposures to or below the permissible exposure limit by means of engineering and work practice controls.
(ii) Written plans for these compliance programs shall include at least the following:
(A) A description of each operation in which inorganic arsenic is emitted; e.g. machinery used, material processed, controls in place, crew size, operating procedures and maintenance practices;
(B) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic;
(C) A report of the technology considered in meeting the permissible exposure limit;
(D) Monitoring data;
(E) A detailed schedule for implementation of the engineering controls and work practices that cannot be implemented immediately and for the adaption and implementation of any additional engineering and work practices necessary to meet the permissible exposure limit;
(F) Whenever the employer will not achieve the permissible exposure limit with engineering controls and work practices by December 31, 1979, the employer shall include in the compliance plan an analysis of the effectiveness of the various controls, shall install engineering controls and institute work practices on the quickest schedule feasible, and shall include in the compliance plan and implement a program to minimize the discomfort and maximize the effectiveness of respirator use; and
(G) Other relevant information.
(iii) Written plans for such a program shall be submitted upon request to the Assistant Secretary and the Director, and shall be available at the worksite for examination and copying by the Assistant Secretary, Director, any affected employee or authorized employee representatives.
(iv) The plans required by this paragraph must be revised and updated at least annually to reflect the current status of the program.
(h) Respiratory protection—(1) General. For employees who use respirators required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph. Respirators must be used during:
(i) Periods necessary to install or implement feasible engineering or work-practice controls.
(ii) Work operations, such as maintenance and repair activities, for which the employer establishes that engineering and work-practice controls are not feasible.
(iii) Work operations for which engineering and work-practice controls are not yet sufficient to reduce employee exposures to or below the permissible exposure limit.
(iv) Emergencies.
(2) Respirator program. (i) The employer must implement a respiratory protection program in accordance with § 1910.134(b) through (d) (except (d)(1)(iii)), and (f) through (m), which covers each employee required by this section to use a respirator.
(ii) If an employee exhibits breathing difficulty during fit testing or respirator use, they must be examined by a physician trained in pulmonary medicine to determine whether they can use a respirator while performing the required duty.
(3) Respirator selection. (i) Employers must:
(A) Select, and provide to employees, the appropriate respirators specified in paragraph (d)(3)(i)(A) of 29 CFR 1910.134.
(B) Ensure that employees do not use half mask respirators for protection against arsenic trichloride because it is absorbed rapidly through the skin.
(C) Provide HEPA filters for powered and non-powered air-purifying respirators.
(D) Select for employee use:
(1) Air-purifying respirators that have a combination HEPA filter with an appropriate gas-sorbent cartridge or canister when the employee's exposure exceeds the permissible exposure level for inorganic arsenic and the relevant limit for other gases.
(2) Front-or back-mounted gas masks equipped with HEPA filters and acid gas canisters or any full facepiece supplied-air respirators when the inorganic arsenic concentration is at or below 500 mg/m
(ii) Employees required to use respirators may choose, and the employer must provide, a powered air-purifying respirator if it will provide proper protection. In addition, the employer must provide a combination dust and acid-gas respirator to employees who are exposed to gases over the relevant exposure limits.
(i) [Reserved]
(j) Protective work clothing and equipment—(1) Provision and use. Where the possibility of skin or eye irritation from inorganic arsenic exists, and for all workers working in regulated areas, the employer shall provide at no cost to the employee and assure that employees use appropriate and clean protective work clothing and equipment such as, but not limited to:
(i) Coveralls or similar full-body work clothing;
(ii) Gloves, and shoes or coverlets;
(iii) Face shields or vented goggles when necessary to prevent eye irritation, which comply with the requirements of § 1910.133(a) (2)-(6); and
(iv) Impervious clothing for employees subject to exposure to arsenic trichloride.
(2) Cleaning and replacement. (i) The employer shall provide the protective clothing required in paragraph (j) (1) of this section in a freshly laundered and dry condition at least weekly, and daily if the employee works in areas where exposures are over 100 µg/m
(ii) The employer shall clean, launder, or dispose of protective clothing required by paragraph (j) (1) of this section.
(iii) The employer shall repair or replace the protective clothing and equipment as needed to maintain their effectiveness.
(iv) The employer shall assure that all protective clothing is removed at the completion of a work shift only in change rooms prescribed in paragraph (m) (1) of this section.
(v) The employer shall assure that contaminated protective clothing which is to be cleaned, laundered, or disposed of, is placed in a closed container in the change-room which prevents dispersion of inorganic arsenic outside the container.
(vi) The employer shall inform in writing any person who cleans or launders clothing required by this section, of the potentially harmful effects including the carcinogenic effects of exposure to inorganic arsenic.
(vii) Labels on contaminated protective clothing and equipment.
(A) The employer shall ensure that the containers of contaminated protective clothing and equipment in the workplace or which are to be removed from the workplace are labeled and that the labels include the following information:
(B) Prior to June 1, 2015, employers may include the following information on containers of protective clothing and equipment in lieu of the labeling requirements in paragraphs (j)(2)(vii) of this section:
(viii) The employer shall prohibit the removal of inorganic arsenic from protective clothing or equipment by blowing or shaking.
(k) Housekeeping—(1) Surfaces. All surfaces shall be maintained as free as practicable of accumulations of inorganic arsenic.
(2) Cleaning floors. Floors and other accessible surfaces contaminated with inorganic arsenic may not be cleaned by the use of compressed air, and shoveling and brushing may be used only where vacuuming or other relevant methods have been tried and found not to be effective.
(3) Vacuuming. Where vacuuming methods are selected, the vacuums shall be used and emptied in a manner to minimize the reentry of inorganic arsenic into the workplace.
(4) Housekeeping plan. A written housekeeping and maintenance plan shall be kept which shall list appropriate frequencies for carrying out housekeeping operations, and for cleaning and maintaining dust collection equipment. The plan shall be available for inspection by the Assistant Secretary.
(5) Maintenance of equipment. Periodic cleaning of dust collection and ventilation equipment and checks of their effectiveness shall be carried out to maintain the effectiveness of the system and a notation kept of the last check of effectiveness and cleaning or maintenance.
(l) [Reserved]
(m) Hygiene facilities and practices—(1) Change rooms. The employer shall provide for employees working in regulated areas or subject to the possibility of skin or eye irritation from inorganic arsenic, clean change rooms equipped with storage facilities for street clothes and separate storage facilities for protective clothing and equipment in accordance with 29 CFR 1910.141(e).
(2) Showers. (i) The employer shall assure that employees working in regulated areas or subject to the possibility of skin or eye irritation from inorganic arsenic shower at the end of the work shift.
(ii) The employer shall provide shower facilities in accordance with § 1910.141(d)(3).
(3) Lunchrooms. (i) The employer shall provide for employees working in regulated areas, lunchroom facilities which have a temperature controlled, positive pressure, filtered air supply, and which are readily accessible to employees working in regulated areas.
(ii) The employer shall assure that employees working in the regulated area or subject to the possibility of skin or eye irritation from exposure to inorganic arsenic wash their hands and face prior to eating.
(4) Lavatories. The employer shall provide lavatory facilities which comply with § 1910.141(d) (1) and (2).
(5) Vacuuming clothes. The employer shall provide facilities for employees working in areas where exposure, without regard to the use of respirators, exceeds 100 µg/m
(6) Avoidance of skin irritation. The employer shall assure that no employee is exposed to skin or eye contact with arsenic trichloride, or to skin or eye contact with liquid or particulate inorganic arsenic which is likely to cause skin or eye irritation.
(n) Medical surveillance—(1) General—(i) Employees covered. The employer shall institute a medical surveillance program for the following employees:
(A) All employees who are or will be exposed above the action level, without regard to the use of respirators, at least 30 days per year; and
(B) All employees who have been exposed above the action level, without regard to respirator use, for 30 days or more per year for a total of 10 years or more of combined employment with the employer or predecessor employers prior to or after the effective date of this standard. The determination of exposures prior to the effective date of this standard shall be based upon prior exposure records, comparison with the first measurements taken after the effective date of this standard, or comparison with records of exposures in areas with similar processes, extent of engineering controls utilized and materials used by that employer.
(ii) Examination by physician. The employer shall assure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee, without loss of pay and at a reasonable time and place.
(2) Initial examinations. By December 1, 1978, for employees initially covered by the medical provisions of this section, or thereafter at the time of initial assignment to an area where the employee is likely to be exposed over the action level at least 30 days per year, the employer shall provide each affected employee an opportunity for a medical examination, including at least the following elements:
(i) A work history and a medical history which shall include a smoking history and the presence and degree of respiratory symptoms such as breathlessness, cough, sputum production and wheezing.
(ii) A medical examination which shall include at least the following:
(A) A standard film or digital posterior-anterior chest x-ray;
(B) A nasal and skin examination; and
(C) Other examinations which the physician believes appropriate because of the employees exposure to inorganic arsenic or because of required respirator use.
(3) Periodic examinations. (i) Examinations must be provided in accordance with paragraphs (n)(2)(i) and (n)(2)(ii)(B) and (C) of this section at least annually.
(ii) Whenever a covered employee has not taken the examinations specified in paragraphs (n)(2)(i) and (n)(2)(ii)(B) and (C) of this section within six (6) months preceding the termination of employment, the employer shall provide such examinations to the employee upon termination of employment.
(4) Additional examinations. If the employee for any reason develops signs or symptoms commonly associated with exposure to inorganic arsenic the employer shall provide an appropriate examination and emergency medical treatment.
(5) Information provided to the physician. The employer shall provide the following information to the examining physician:
(i) A copy of this standard and its appendices;
(ii) A description of the affected employee's duties as they relate to the employee's exposure;
(iii) The employee's representative exposure level or anticipated exposure level;
(iv) A description of any personal protective equipment used or to be used; and
(v) Information from previous medical examinations of the affected employee which is not readily available to the examining physician.
(6) Physician's written opinion. (i) The employer shall obtain a written opinion from the examining physician which shall include:
(A) The results of the medical examination and tests performed;
(B) The physician's opinion as to whether the employee has any detected medical conditions which would place the employee at increased risk of material impairment of the employee's health from exposure to inorganic arsenic;
(C) Any recommended limitations upon the employee's exposure to inorganic arsenic or upon the use of protective clothing or equipment such as respirators; and
(D) A statement that the employee has been informed by the physician of the results of the medical examination and any medical conditions which require further explanation or treatment.
(ii) The employer shall instruct the physician not to reveal in the written opinion specific findings or diagnoses unrelated to occupational exposure.
(iii) The employer shall provide a copy of the written opinion to the affected employee.
(o) Employee information and training—(1) Training program. (i) The employer shall train each employee who is subject to exposure to inorganic arsenic above the action level without regard to respirator use, or for whom there is the possibility of skin or eye irritation from inorganic arsenic, in accordance with the requirements of this section. The employer shall institute a training program and ensure employee participation in the program.
(ii) The training program shall be provided by October 1, 1978, for employees covered by this provision, at the time of initial assignment for those subsequently covered by this provision, and at least annually for other covered employees thereafter; and the employer shall assure that each employee is informed of the following:
(A) The information contained in appendix A;
(B) The quantity, location, manner of use, storage, sources of exposure, and the specific nature of operations which could result in exposure to inorganic arsenic as well as any necessary protective steps;
(C) The purpose, proper use, and limitation of respirators;
(D) The purpose and a description of the medical surveillance program as required by paragraph (n) of this section;
(E) The engineering controls and work practices associated with the employee's job assignment; and
(F) A review of this standard.
(2) Access to training materials. (i) The employer shall make readily available to all affected employees a copy of this standard and its appendices.
(ii) The employer shall provide; upon request, all materials relating to the employee information and training program to the Assistant Secretary and the Director.
(p) Communication of hazards—(1) Hazard communication—General. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for inorganic arsenic.
(ii) In classifying the hazards of inorganic arsenic at least the following hazards are to be addressed: Cancer; liver effects; skin effects; respiratory irritation; nervous system effects; and acute toxicity effects.
(iii) Employers shall include inorganic arsenic in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of inorganic arsenic and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (o) of this section.
(iv) The employer shall ensure that no statement appears on or near any sign or label required by this paragraph (p) which contradicts or detracts from the meaning of the required sign or label.
(2) Signs. (i) The employer shall post signs demarcating regulated areas bearing the legend:
(ii) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (p)(2)(i) of this section:
(iii) The employer shall ensure that signs required by this paragraph (p) are illuminated and cleaned as necessary so that the legend is readily visible.
(3)(i) Prior to June 1, 2015, in lieu of the labeling requirements in paragraphs (p)(1)(i) of this section, employers may apply precautionary labels to all shipping and storage containers of inorganic arsenic, and to all products containing inorganic arsenic, bearing the following legend:
(ii) Labels are not required when the inorganic arsenic in the product is bound in such a manner so as to make unlikely the possibility of airborne exposure to inorganic arsenic. (Possible examples of products not requiring labels are semiconductors, light emitting diodes and glass.)
(q) Recordkeeping—(1) Exposure monitoring. (i) The employer shall establish and maintain an accurate record of all monitoring required by paragraph (e) of this section.
(ii) This record shall include:
(A) The date(s), number, duration location, and results of each of the samples taken, including a description of the sampling procedure used to determine representative employee exposure where applicable;
(B) A description of the sampling and analytical methods used and evidence of their accuracy;
(C) The type of respiratory protective devices worn, if any;
(D) Name and job classification of the employees monitored and of all other employees whose exposure the measurement is intended to represent; and
(E) The environmental variables that could affect the measurement of the employee's exposure.
(iii) The employer shall maintain these monitoring records for at least 40 years or for the duration of employment plus 20 years, whichever, is longer.
(2) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance as required by paragraph (n) of this section.
(ii) This record shall include:
(A) The name and description of duties of the employee;
(B) A copy of the physician's written opinions;
(C) Results of any exposure monitoring done for that employee and the representative exposure levels supplied to the physician; and
(D) Any employee medical complaints related to exposure to inorganic arsenic.
(iii) The employer shall in addition keep, or assure that the examining physician keeps, the following medical records;
(A) A copy of the medical examination results including medical and work history required under paragraph (n) of this section;
(B) A description of the laboratory procedures and a copy of any standards or guidelines used to interpret the test results or references to that information;
(C) The initial X-ray;
(D) The X-rays for the most recent 5 years; and
(E) Any X-rays with a demonstrated abnormality and all subsequent X-rays;
(iv) The employer shall maintain or assure that the physician maintains those medical records for at least 40 years, or for the duration of employment plus 20 years whichever is longer.
(3) Availability. (i) The employer shall make available upon request all records required to be maintained by paragraph (q) of this section to the Assistant Secretary and the Director for examination and copying.
(ii) Records required by this paragraph shall be provided upon request to employees, designated representatives, and the Assistant Secretary in accordance with 29 CFR 1910.1020 (a) through (e) and (g) through (i).
(4) Transfer of records. (i) Whenever the employer ceases to do business, the successor employer shall receive and retain all records required to be maintained by this section.
(ii) The employer shall also comply with any additional requirements involving the transfer of records set in 29 CFR 1910.1020(h).
(r) Observation of monitoring—(1) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to inorganic arsenic conducted pursuant to paragraph (e) of this section.
(2) Observation procedures. (i) Whenever observation of the monitoring of employee exposure to inorganic arsenic requires entry into an area where the use of respirators, protective clothing, or equipment is required, the employer shall provide the observer with and assure the use of such respirators, clothing, and such equipment, and shall require the observer to comply with all other applicable safety and health procedures.
(ii) Without interfering with the monitoring, observers shall be entitled to;
(A) Receive an explanation of the measurement procedures;
(B) Observe all steps related to the monitoring of inorganic arsenic performed at the place of exposure; and
(C) Record the results obtained or receive copies of the results when returned by the laboratory.
(s) Appendices. The information contained in the appendices to this section is not intended by itself, to create any additional obligations not otherwise imposed by this standard nor detract from any existing obligation.
A. Substance. Inorganic Arsenic.
B. Definition. Copper acetoarsenite, arsenic and all inorganic compounds containing arsenic except arsine, measured as arsenic (As).
C. Permissible Exposure Limit. 10 micrograms per cubic meter of air as determined as an average over an 8-hour period. No employee may be exposed to any skin or eye contact with arsenic trichloride or to skin or eye contact likely to cause skin or eye irritation.
D. Regulated Areas. Only employees authorized by your employer should enter a regulated area.
A. Comments. The health hazard of inorganic arsenic is high.
B. Ways in which the chemical affects your body. Exposure to airborne concentrations of inorganic arsenic may cause lung cancer, and can be a skin irritant. Inorganic arsenic may also affect your body if swallowed. One compound in particular, arsenic trichloride, is especially dangerous because it can be absorbed readily through the skin. Because inorganic arsenic is a poison, you should wash your hands thoroughly prior to eating or smoking.
A. Respirators. Respirators will be provided by your employer at no cost to you for routine use if your employer is in the process of implementing engineering and work practice controls or where engineering and work practice controls are not feasible or insufficient. You must wear respirators for non-routine activities or in emergency situations where you are likely to be exposed to levels of inorganic arsenic in excess of the permissible exposure limit. Since how well your respirator fits your face is very important, your employer is required to conduct fit tests to make sure the respirator seals properly when you wear it. These tests are simple and rapid and will be explained to you during training sessions.
B. Protective clothing. If you work in a regulated area, your employer is required to provide at no cost to you, and you must wear, appropriate, clean, protective clothing and equipment. The purpose of this equipment is to prevent you from bringing to your home arsenic-contaminated dust and to protect your body from repeated skin contact with inorganic arsenic likely to cause skin irritation. This clothing should include such items as coveralls or similar full-body clothing, gloves, shoes or coverlets, and aprons. Protective equipment should include face shields or vented goggles, where eye irritation may occur. y
You must not eat, drink, smoke, chew gum or tobacco, or apply cosmetics in the regulated area, except that drinking water is permitted. If you work in a regulated area your employer is required to provide lunchrooms and other areas for these purposes.
If you work in a regulated area, your employer is required to provide showers, washing facilities, and change rooms. You must wash your face, and hands before eating and must shower at the end of the work shift. Do not take used protective clothing out of change rooms without your employer's permission. Your employer is required to provide for laundering or cleaning of your protective clothing.
Your employer is required to post warning signs and labels for your protection. Signs must be posted in regulated areas. The signs must warn that a cancer hazard is present, that only authorized employees may enter the area, and that no smoking or eating is allowed, and that respirators must be worn.
If your exposure to arsenic is over the Action Level (5 µg/m3)—(including all persons working in regulated areas) at least 30 days per year, or you have been exposed to arsenic for more than 10 years over the Action Level, your employer is required to provide you with a medical examination. The examination shall be every 6 months for employees over 45 years old or with more than 10 years exposure over the Action Level and annually for other covered employees. The medical examination must include a medical history; a chest X-ray (during initial examination only); skin examination and a nasal examination. The examining physician will provide a written opinion to your employer containing the results of the medical exams. You should also receive a copy of this opinion. The physician must not tell your employer any conditions he detects unrelated to occupational exposure to arsenic but must tell you those conditions.
Your employer is required to monitor your exposure to arsenic and you or your representatives are entitled to observe the monitoring procedure. You are entitled to receive an explanation of the measurement procedure, and to record the results obtained. When the monitoring procedure is taking place in an area where respirators or personal protective clothing and equipment are required to be worn, you must also be provided with and must wear the protective clothing and equipment.
You or your representative are entitled to records of your exposure to inorganic arsenic and your medical examination records if you request your employer to provide them.
Additional information on all of these items plus training as to hazards of exposure to inorganic arsenic and the engineering and work practice controls associated with your job will also be provided by your employer. If you are exposed over the permissible exposure limit, your employer must inform you of that fact and the actions he is taking to reduce your exposures.
A. Arsenic (metal).
1. Formula: As.
2. Appearance: Gray metal.
3. Melting point: Sublimes without melting at 613C.
4. Specific Gravity: (H20 = 1):5.73.
5. Solubility in water: Insoluble.
B. Arsenic Trioxide.
1. Formula: As203, (As406).
2. Appearance: White powder.
3. Melting point: 315C.
4. Specific Gravity (H20 = 1):3.74.
5. Solubility in water: 3.7 grams in 100cc of water at 20c.
C. Arsenic Trichloride (liquid).
1. Formula: AsC13.
2. Appearance: Colorless or pale yellow liquid.
3. Melting point: −8.5C.
4. Boiling point: 130.2C.
5. Specific Gravity (H20 = 1):2.16 at 20C.
6. Vapor Pressure: 10mm Hg at 23.5C.
7. Solubility in Water: Decomposes in water.
A. Fire: Arsenic, arsenic Trioxide and Arsenic Trichloride are nonflammable.
B. Reactivity:
1. Conditions Contributing to instability: Heat.
2. Incompatibility: Hydrogen gas can react with inorganic arsenic to form the highly toxic gas arsine.
Samples collected should be full shift (at least 7-hour) samples. Sampling should be done using a personal sampling pump at a flow rate of 2 liters per minute. Samples should be collected on 0.8 micrometer pore size membrane filter (37mm diameter). Volatile arsenicals such as arsenic trichloride can be most easily collected in a midget bubbler filled with 15 ml. of 0.1 N NaOH.
The method of sampling and analysis should have an accuracy of not less than ±25 percent (with a confidence limit of 95 percent) for 10 micrograms per cubic meter of air (10 µg/m
Medical examinations are to be provided for all employees exposed to levels of inorganic arsenic above the action level (5 µg/m3) for at least 30 days per year (which would include among others, all employees, who work in regulated areas). Examinations are also to be provided to all employees who have had 10 years or more exposure above the action level for more than 30 days per year while working for the present or predecessor employer though they may no longer be exposed above the level.
An initial medical examination is to be provided to all such employees by December 1, 1978. In addition, an initial medical examination is to be provided to all employees who are first assigned to areas in which worker exposure will probably exceed 5 µg/m3 (after August 1, 1978) at the time of initial assignment. In addition to its immediate diagnostic usefulness, the initial examination will provide a baseline for comparing future test results. The initial examination must include as a minimum the following elements:
(1) A work and medical history, including a smoking history, and presence and degree of respiratory symptoms such as breathlessness, cough, sputum production, and wheezing;
(2) A 14″ by 17″ or other reasonably-sized standard film or digital posterior-anterior chest X-ray;
(3) A nasal and skin examination; and
(4) Other examinations which the physician believes appropriate because of the employee's exposure to inorganic arsenic or because of required respirator use.
Periodic examinations are also to be provided to the employees listed in the first paragraph of this section. The periodic examinations shall be given annually for those covered employees 45 years of age or less with fewer than 10 years employment in areas where employee exposure exceeds the action level (5 µg/m
Periodic examinations for other covered employees shall be provided every six (6) months. These examinations shall include all tests required in the initial examination, except the chest X-ray, and the medical history need only be updated.
The examination contents are minimum requirements. Additional tests such as lateral and oblique X-rays or pulmonary function tests may be useful. For workers exposed to three arsenicals which are associated with lymphatic cancer, copper acetoarsenite, potassium arsenite, or sodium arsenite the examination should also include palpation of superficial lymph nodes and complete blood count.
The OSHA standard is based on minimizing risk of exposed workers dying of lung cancer from exposure to inorganic arsenic. It will also minimize skin cancer from such exposures.
The following three sections quoted from “Occupational Diseases: A Guide to Their Recognition”, Revised Edition, June 1977, National Institute for Occupational Safety and Health is included to provide information on the nonneoplastic effects of exposure to inorganic arsenic. Such effects should not occur if the OSHA standards are followed.
A. Local—Trivalent arsenic compounds are corrosive to the skin. Brief contact has no effect but prolonged contact results in a local hyperemia and later vesicular or pustular eruption. The moist mucous membranes are most sensitive to the irritant action. Conjunctiva, moist and macerated areas of skin, the eyelids, the angles of the ears, nose, mouth, and respiratory mucosa are also vulnerable to the irritant effects. The wrists are common sites of dermatitis, as are the genitalia if personal hygiene is poor. Perforations of the nasal septum may occur. Arsenic trioxide and pentoxide are capable of producing skin sensitization and contact dermatitis. Arsenic is also capable of producing keratoses, especially of the palms and soles.
B. Systemic—The acute toxic effects of arsenic are generally seen following ingestion of inorganic arsenical compounds. This rarely occurs in an industrial setting. Symptoms develop within
Cases of acute arsenical poisoning due to inhalation are exceedingly rare in industry. When it does occur, respiratory tract symptoms—cough, chest pain, dyspnea—giddiness, headache, and extreme general weakness precede gastrointestinal symptoms. The acute toxic symptoms of trivalent arsenical poisoning are due to severe inflammation of the mucous membranes and greatly increased permeability of the blood capillaries.
Chronic arsenical poisoning due to ingestion is rare and generally confined to patients taking prescribed medications. However, it can be a concomitant of inhaled inorganic arsenic from swallowed sputum and improper eating habits. Symptoms are weight loss, nausea and diarrhea alternating with constipation, pigmentation and eruption of the skin, loss of hair, and peripheral neuritis. Chronic hepatitis and cirrhosis have been described. Polyneuritis may be the salient feature, but more frequently there are numbness and parasthenias of “glove and stocking” distribution. The skin lesions are usually melanotic and keratotic and may occasionally take the form of an intradermal cancer of the squamous cell type, but without infiltrative properties. Horizontal white lines (striations) on the fingernails and toenails are commonly seen in chronic arsenical poisoning and are considered to be a diagnostic accompaniment of arsenical polyneuritis.
Inhalation of inorganic arsenic compounds is the most common cause of chronic poisoning in the industrial situation. This condition is divided into three phases based on signs and symptoms.
First Phase: The worker complains of weakness, loss of appetite, some nausea, occasional vomiting, a sense of heaviness in the stomach, and some diarrhea.
Second Phase: The worker complains of conjunctivitis, a catarrhal state of the mucous membranes of the nose, larynx, and respiratory passage. Coryza, hoarseness, and mild tracheobronchitis may occur. Perforation of the nasal septum is common, and is probably the most typical lesion of the upper respiratory tract in occupational exposure to arsenical dust. Skin lesions, eczematoid and allergic in type, are common.
Third Phase: The worker complains of symptoms of peripheral neuritis, initially of hands and feet, which is essentially sensory. In more severe cases, motor paralyses occur; the first muscles affected are usually the toe extensors and the peronei. In only the most severe cases will paralysis of flexor muscles of the feet or of the extensor muscles of hands occur.
Liver damage from chronic arsenical poisoning is still debated, and as yet the question is unanswered. In cases of chronic and acute arsenical poisoning, toxic effects to the myocardium have been reported based on EKG changes. These findings, however, are now largely discounted and the EKG changes are ascribed to electrolyte disturbances concomitant with arsenicalism. Inhalation of arsenic trioxide and other inorganic arsenical dusts does not give rise to radiological evidence or pneumoconiosis. Arsenic does have a depressant effect upon the bone marrow, with disturbances of both erythropoiesis and myelopoiesis.
Dinman, B. D. 1960. Arsenic; chronic human intoxication. J. Occup. Med. 2:137.
Elkins, H. B. 1959. The Chemistry of Industrial Toxicology, 2nd ed. John Wiley and Sons, New York.
Holmquist, L. 1951. Occupational arsenical dermatitis; a study among employees at a copper-ore smelting works including investigations of skin reactions to contact with arsenic compounds. Acta. Derm. Venereol. (Supp. 26) 31:1.
Pinto, S. S., and C. M. McGill. 1953. Arsenic trioxide exposure in industry. Ind. Med. Surg. 22:281.
Pinto, S. S., and K. W. Nelson. 1976. Arsenic toxicology and industrial exposure. Annu. Rev. Pharmacol. Toxicol. 16:95.
Vallee, B. L., D. D. Ulmer, and W. E. C. Wacker. 1960. Arsenic toxicology and biochemistry. AMA Arch. Indust. Health 21:132.
§ 1910.1020 - Access to employee exposure and medical records.
(a) Purpose. The purpose of this section is to provide employees and their designated representatives a right of access to relevant exposure and medical records; and to provide representatives of the Assistant Secretary a right of access to these records in order to fulfill responsibilities under the Occupational Safety and Health Act. Access by employees, their representatives, and the Assistant Secretary is necessary to yield both direct and indirect improvements in the detection, treatment, and prevention of occupational disease. Each employer is responsible for assuring compliance with this section, but the activities involved in complying with the access to medical records provisions can be carried out, on behalf of the employer, by the physician or other health care personnel in charge of employee medical records. Except as expressly provided, nothing in this section is intended to affect existing legal and ethical obligations concerning the maintenance and confidentiality of employee medical information, the duty to disclose information to a patient/employee or any other aspect of the medical-care relationship, or affect existing legal obligations concerning the protection of trade secret information.
(b) Scope and application. (1) This section applies to each general industry, maritime, and construction employer who makes, maintains, contracts for, or has access to employee exposure or medical records, or analyses thereof, pertaining to employees exposed to toxic substances or harmful physical agents.
(2) This section applies to all employee exposure and medical records, and analyses thereof, of such employees, whether or not the records are mandated by specific occupational safety and health standards.
(3) This section applies to all employee exposure and medical records, and analyses thereof, made or maintained in any manner, including on an in-house of contractual (e.g., fee-for-service) basis. Each employer shall assure that the preservation and access requirements of this section are complied with regardless of the manner in which the records are made or maintained.
(c) Definitions—(1) Access means the right and opportunity to examine and copy.
(2) Analysis using exposure or medical records means any compilation of data or any statistical study based at least in part on information collected from individual employee exposure or medical records or information collected from health insurance claims records, provided that either the analysis has been reported to the employer or no further work is currently being done by the person responsible for preparing the analysis.
(3) Designated representative means any individual or organization to whom an employee gives written authorization to exercise a right of access. For the purposes of access to employee exposure records and analyses using exposure or medical records, a recognized or certified collective bargaining agent shall be treated automatically as a designated representative without regard to written employee authorization.
(4) Employee means a current employee, a former employee, or an employee being assigned or transferred to work where there will be exposure to toxic substances or harmful physical agents. In the case of a deceased or legally incapacitated employee, the employee's legal representative may directly exercise all the employee's rights under this section.
(5) Employee exposure record means a record containing any of the following kinds of information:
(i) Environmental (workplace) monitoring or measuring of a toxic substance or harmful physical agent, including personal, area, grab, wipe, or other form of sampling, as well as related collection and analytical methodologies, calculations, and other background data relevant to interpretation of the results obtained;
(ii) Biological monitoring results which directly assess the absorption of a toxic substance or harmful physical agent by body systems (e.g., the level of a chemical in the blood, urine, breath, hair, fingernails, etc) but not including results which assess the biological effect of a substance or agent or which assess an employee's use of alcohol or drugs;
(iii) Material safety data sheets indicating that the material may pose a hazard to human health; or
(iv) In the absence of the above, a chemcial inventory or any other record which reveals where and when used and the identity (e.g., chemical, common, or trade name) of a toxic substance or harmful physical agent.
(6)(i) Employee medical record means a record concerning the health status of an employee which is made or maintained by a physician, nurse, or other health care personnel or technician, including:
(A) Medical and employment questionnaires or histories (including job description and occupational exposures),
(B) The results of medical examinations (pre-employment, pre-assignment, periodic, or episodic) and laboratory tests (including chest and other X-ray examinations taken for the purposes of establishing a base-line or detecting occupational illness, and all biological monitoring not defined as an “employee exposure record”),
(C) Medical opinions, diagnoses, progress notes, and recommendations,
(D) First aid records,
(E) Descriptions of treatments and prescriptions, and
(F) Employee medical complaints.
(ii) “Employee medical record” does not include medical information in the form of:
(A) Physical specimens (e.g., blood or urine samples) which are routinely discarded as a part of normal medical practice; or
(B) Records concerning health insurance claims if maintained separately from the employer's medical program and its records, and not accessible to the employer by employee name or other direct personal identifier (e.g., social security number, payroll number, etc.); or
(C) Records created solely in preparation for litigation which are privileged from discovery under the applicable rules of procedure or evidence; or
(D) Records concerning voluntary employee assistance programs (alcohol, drug abuse, or personal counseling programs) if maintained separately from the employer's medical program and its records.
(7) Employer means a current employer, a former employer, or a successor employer.
(8) Exposure or exposed means that an employee is subjected to a toxic substance or harmful physical agent in the course of employment through any route of entry (inhalation, ingestion, skin contact or absorption, etc.), and includes past exposure and potential (e.g., accidental or possible) exposure, but does not include situations where the employer can demonstrate that the toxic substance or harmful physical agent is not used, handled, stored, generated, or present in the workplace in any manner different from typical non-occupational situations.
(9) Health Professional means a physician, occupational health nurse, industrial hygienist, toxicologist, or epidemiologist, providing medical or other occupational health services to exposed employees.
(10) Record means any item, collection, or grouping of information regardless of the form or process by which it is maintained (e.g., paper document, microfiche, microfilm, X-ray film, or automated data processing).
(11) Specific chemical identity means the chemical name, Chemical Abstracts Service (CAS) Registry Number, or any other information that reveals the precise chemical designation of the substance.
(12)(i) Specific written consent means a written authorization containing the following:
(A) The name and signature of the employee authorizing the release of medical information,
(B) The date of the written authorization,
(C) The name of the individual or organization that is authorized to release the medical information,
(D) The name of the designated representative (individual or organization) that is authorized to receive the released information,
(E) A general description of the medical information that is authorized to be released,
(F) A general description of the purpose for the release of the medical information, and
(G) A date or condition upon which the written authorization will expire (if less than one year).
(ii) A written authorization does not operate to authorize the release of medical information not in existence on the date of written authorization, unless the release of future information is expressly authorized, and does not operate for more than one year from the date of written authorization.
(iii) A written authorization may be revoked in writing prospectively at any time.
(13) Toxic substance or harmful physical agent means any chemical substance, biological agent (bacteria, virus, fungus, etc.), or physical stress (noise, heat, cold, vibration, repetitive motion, ionizing and non-ionizing radiation, hypo-or hyperbaric pressure, etc.) which:
(i) Is listed in the latest printed edition of the National Institute for Occupational Safety and Health (NIOSH) Registry of Toxic Effects of Chemical Substances (RTECS), which is incorporated by reference as specified in § 1910.6; or
(ii) Has yielded positive evidence of an acute or chronic health hazard in testing conducted by, or known to, the employer; or
(iii) Is the subject of a material safety data sheet kept by or known to the employer indicating that the material may pose a hazard to human health.
(14) Trade secret means any confidential formula, pattern, process, device, or information or compilation of information that is used in an employer's business and that gives the employer an opportunity to obtain an advantage over competitors who do not know or use it.
(d) Preservation of records. (1) Unless a specific occupational safety and health standard provides a different period of time, each employer shall assure the preservation and retention of records as follows:
(i) Employee medical records. The medical record for each employee shall be preserved and maintained for at least the duration of employment plus thirty (30) years, except that the following types of records need not be retained for any specified period:
(A) Health insurance claims records maintained separately from the employer's medical program and its records,
(B) First aid records (not including medical histories) of one-time treatment and subsequent observation of minor scratches, cuts, burns, splinters, and the like which do not involve medical treatment, loss of consciousness, restriction of work or motion, or transfer to another job, if made on-site by a non-physician and if maintained separately from the employer's medical program and its records, and
(C) The medical records of employees who have worked for less than (1) year for the employer need not be retained beyond the term of employment if they are provided to the employee upon the termination of employment.
(ii) Employee exposure records. Each employee exposure record shall be preserved and maintained for at least thirty (30) years, except that:
(A) Background data to environmental (workplace) monitoring or measuring, such as laboratory reports and worksheets, need only be retained for one (1) year as long as the sampling results, the collection methodology (sampling plan), a description of the analytical and mathematical methods used, and a summary of other background data relevant to interpretation of the results obtained, are retained for at least thirty (30) years; and
(B) Material safety data sheets and paragraph (c)(5)(iv) records concerning the identity of a substance or agent need not be retained for any specified period as long as some record of the identity (chemical name if known) of the substance or agent, where it was used, and when it was used is retained for at least thirty (30) years;
(C) Biological monitoring results designated as exposure records by specific occupational safety and health standards shall be preserved and maintained as required by the specific standard.
(iii) Analyses using exposure or medical records. Each analysis using exposure or medial records shall be preserved and maintained for at least thirty (30) years.
(2) Nothing in this section is intended to mandate the form, manner, or process by which an employer preserves a record as long as the information contained in the record is preserved and retrievable, except that chest X-ray films shall be preserved in their original state.
(e) Access to records—(1) General. (i) Whenever an employee or designated representative requests access to a record, the employer shall assure that access is provided in a reasonable time, place, and manner. If the employer cannot reasonably provide access to the record within fifteen (15) working days, the employer shall within the fifteen (15) working days apprise the employee or designated representative requesting the record of the reason for the delay and the earliest date when the record can be made available.
(ii) The employer may require of the requester only such information as should be readily known to the requester and which may be necessary to locate or identify the records being requested (e.g. dates and locations where the employee worked during the time period in question).
(iii) Whenever an employee or designated representative requests a copy of a record, the employer shall assure that either:
(A) A copy of the record is provided without cost to the employee or representative,
(B) The necessary mechanical copying facilities (e.g., photocopying) are made available without cost to the employee or representative for copying the record, or
(C) The record is loaned to the employee or representative for a reasonable time to enable a copy to be made.
(iv) In the case of an original X-ray, the employer may restrict access to on-site examination or make other suitable arrangements for the temporary loan of the X-ray.
(v) Whenever a record has been previously provided without cost to an employee or designated representative, the employer may charge reasonable, non-discriminatory administrative costs (i.e., search and copying expenses but not including overhead expenses) for a request by the employee or designated representative for additional copies of the record, except that
(A) An employer shall not charge for an initial request for a copy of new information that has been added to a record which was previously provided; and
(B) An employer shall not charge for an initial request by a recognized or certified collective bargaining agent for a copy of an employee exposure record or an analysis using exposure or medical records.
(vi) Nothing in this section is intended to preclude employees and collective bargaining agents from collectively bargaining to obtain access to information in addition to that available under this section.
(2) Employee and designated representative access—(i) Employee exposure records. (A) Except as limited by paragraph (f) of this section, each employer shall, upon request, assure the access to each employee and designated representative to employee exposure records relevant to the employee. For the purpose of this section, an exposure record relevant to the employee consists of:
(1) A record which measures or monitors the amount of a toxic substance or harmful physical agent to which the employee is or has been exposed;
(2) In the absence of such directly relevant records, such records of other employees with past or present job duties or working conditions related to or similar to those of the employee to the extent necessary to reasonably indicate the amount and nature of the toxic substances or harmful physical agents to which the employee is or has been subjected, and
(3) Exposure records to the extent necessary to reasonably indicate the amount and nature of the toxic substances or harmful physical agents at workplaces or under working conditions to which the employee is being assigned or transferred.
(B) Requests by designated representatives for unconsented access to employee exposure records shall be in writing and shall specify with reasonable particularity:
(1) The records requested to be disclosed; and
(2) The occupational health need for gaining access to these records.
(ii) Employee medical records. (A) Each employer shall, upon request, assure the access of each employee to employee medical records of which the employee is the subject, except as provided in paragraph (e)(2)(ii)(D) of this section.
(B) Each employer shall, upon request, assure the access of each designated representative to the employee medical records of any employee who has given the designated representative specific written consent. appendix A to this section contains a sample form which may be used to establish specific written consent for access to employee medical records.
(C) Whenever access to employee medical records is requested, a physician representing the employer may recommend that the employee or designated representative:
(1) Consult with the physician for the purposes of reviewing and discussing the records requested,
(2) Accept a summary of material facts and opinions in lieu of the records requested, or
(3) Accept release of the requested records only to a physician or other designated representative.
(D) Whenever an employee requests access to his or her employee medical records, and a physician representing the employer believes that direct employee access to information contained in the records regarding a specific diagnosis of a terminal illness or a psychiatric condition could be detrimental to the employee's health, the employer may inform the employee that access will only be provided to a designated representative of the employee having specific written consent, and deny the employee's request for direct access to this information only. Where a designated representative with specific written consent requests access to information so withheld, the employer shall assure the access of the designated representative to this information, even when it is known that the designated representative will give the information to the employee.
(E) A physician, nurse, or other responsible health care personnel maintaining medical records may delete from requested medical records the identity of a family member, personal friend, or fellow employee who has provided confidential information concerning an employee's health status.
(iii) Analyses using exposure or medical records. (A) Each employee shall, upon request, assure the access of each employee and designated representative to each analysis using exposure or medical records concerning the employee's working conditions or workplace.
(B) Whenever access is requested to an analysis which reports the contents of employee medical records by either direct identifier (name, address, social security number, payroll number, etc.) or by information which could reasonably be used under the circumstances indirectly to identify specific employees (exact age, height, weight, race, sex, date of initial employment, job title, etc.), the employer shall assure that personal identifiers are removed before access is provided. If the employer can demonstrate that removal of personal identifiers from an analysis is not feasible, access to the personally identifiable portions of the analysis need not be provided.
(3) OSHA access. (i) Each employer shall, upon request, and without derogation of any rights under the Constitution or the Occupational Safety and Health Act of 1970, 29 U.S.C. 651 et seq., that the employer chooses to exercise, assure the prompt access of representatives of the Assistant Secretary of Labor for Occupational Safety and Health to employee exposure and medical records and to analyses using exposure or medical records. Rules of agency practice and procedure governing OSHA access to employee medical records are contained in 29 CFR 1913.10.
(ii) Whenever OSHA seeks access to personally identifiable employee medical information by presenting to the employer a written access order pursuant to 29 CFR 1913.10(d), the employer shall prominently post a copy of the written access order and its accompanying cover letter for at least fifteen (15) working days.
(f) Trade secrets. (1) Except as provided in paragraph (f)(2) of this section, nothing in this section precludes an employer from deleting from records requested by a health professional, employee, or designated representative any trade secret data which discloses manufacturing processes, or discloses the percentage of a chemical substance in mixture, as long as the health professional, employee, or designated representative is notified that information has been deleted. Whenever deletion of trade secret information substantially impairs evaluation of the place where or the time when exposure to a toxic substance or harmful physical agent occurred, the employer shall provide alternative information which is sufficient to permit the requesting party to identify where and when exposure occurred.
(2) The employer may withhold the specific chemical identity, including the chemical name and other specific identification of a toxic substance from a disclosable record provided that:
(i) The claim that the information withheld is a trade secret can be supported;
(ii) All other available information on the properties and effects of the toxic substance is disclosed;
(iii) The employer informs the requesting party that the specific chemical identity is being withheld as a trade secret; and
(iv) The specific chemical identity is made available to health professionals, employees and designated representatives in accordance with the specific applicable provisions of this paragraph.
(3) Where a treating physician or nurse determines that a medical emergency exists and the specific chemical identity of a toxic substance is necessary for emergency or first-aid treatment, the employer shall immediately disclose the specific chemical identity of a trade secret chemical to the treating physician or nurse, regardless of the existence of a written statement of need or a confidentiality agreement. The employer may require a written statement of need and confidentiality agreement, in accordance with the provisions of paragraphs (f)(4) and (f)(5), as soon as circumstances permit.
(4) In non-emergency situations, an employer shall, upon request, disclose a specific chemical identity, otherwise permitted to be withheld under paragraph (f)(2) of this section, to a health professional, employee, or designated representative if:
(i) The request is in writing;
(ii) The request describes with reasonable detail one or more of the following occupational health needs for the information:
(A) To assess the hazards of the chemicals to which employees will be exposed;
(B) To conduct or assess sampling of the workplace atmosphere to determine employee exposure levels;
(C) To conduct pre-assignment or periodic medical surveillance of exposed employees;
(D) To provide medical treatment to exposed employees;
(E) To select or assess appropriate personal protective equipment for exposed employees;
(F) To design or assess engineering controls or other protective measures for exposed employees; and
(G) To conduct studies to determine the health effects of exposure.
(iii) The request explains in detail why the disclosure of the specific chemical identity is essential and that, in lieu thereof, the disclosure of the following information would not enable the health professional, employee or designated representative to provide the occupational health services described in paragraph (f)(4)(ii) of this section:
(A) The properties and effects of the chemical;
(B) Measures for controlling workers' exposure to the chemical;
(C) Methods of monitoring and analyzing worker exposure to the chemical; and,
(D) Methods of diagnosing and treating harmful exposures to the chemical;
(iv) The request includes a description of the procedures to be used to maintain the confidentiality of the disclosed information; and,
(v) The health professional, employee, or designated representative and the employer or contractor of the services of the health professional or designated representative agree in a written confidentiality agreement that the health professional, employee or designated representative will not use the trade secret information for any purpose other than the health need(s) asserted and agree not to release the information under any circumstances other than to OSHA, as provided in paragraph (f)(7) of this section, except as authorized by the terms of the agreement or by the employer.
(5) The confidentiality agreement authorized by paragraph (f)(4)(iv) of this section:
(i) May restrict the use of the information to the health purposes indicated in the written statement of need;
(ii) May provide for appropriate legal remedies in the event of a breach of the agreement, including stipulation of a reasonable pre-estimate of likely damages; and,
(iii) May not include requirements for the posting of a penalty bond.
(6) Nothing in this section is meant to preclude the parties from pursuing non-contractual remedies to the extent permitted by law.
(7) If the health professional, employee or designated representative receiving the trade secret information decides that there is a need to disclose it to OSHA, the employer who provided the information shall be informed by the health professional prior to, or at the same time as, such disclosure.
(8) If the employer denies a written request for disclosure of a specific chemical identity, the denial must:
(i) Be provided to the health professional, employee or designated representative within thirty days of the request;
(ii) Be in writing;
(iii) Include evidence to support the claim that the specific chemical identity is a trade secret;
(iv) State the specific reasons why the request is being denied; and,
(v) Explain in detail how alternative information may satisfy the specific medical or occupational health need without revealing the specific chemical identity.
(9) The health professional, employee, or designated representative whose request for information is denied under paragraph (f)(4) of this section may refer the request and the written denial of the request to OSHA for consideration.
(10) When a heath professional employee, or designated representative refers a denial to OSHA under paragraph (f)(9) of this section, OSHA shall consider the evidence to determine if:
(i) The employer has supported the claim that the specific chemical identity is a trade secret;
(ii) The health professional employee, or designated representative has supported the claim that there is a medical or occupational health need for the information; and
(iii) The health professional, employee or designated representative has demonstrated adequate means to protect the confidentiality.
(11)(i) If OSHA determines that the specific chemical identity requested under paragraph (f)(4) of this section is not a bona fide trade secret, or that it is a trade secret but the requesting health professional, employee or designated representatives has a legitimate medical or occupational health need for the information, has executed a written confidentiality agreement, and has shown adequate means for complying with the terms of such agreement, the employer will be subject to citation by OSHA.
(ii) If an employer demonstrates to OSHA that the execution of a confidentiality agreement would not provide sufficient protection against the potential harm from the unauthorized disclosure of a trade secret specific chemical identity, the Assistant Secretary may issue such orders or impose such additional limitations or conditions upon the disclosure of the requested chemical information as may be appropriate to assure that the occupational health needs are met without an undue risk of harm to the employer.
(12) Notwithstanding the existence of a trade secret claim, an employer shall, upon request, disclose to the Assistant Secretary any information which this section requires the employer to make available. Where there is a trade secret claim, such claim shall be made no later than at the time the information is provided to the Assistant Secretary so that suitable determinations of trade secret status can be made and the necessary protections can be implemented.
(13) Nothing in this paragraph shall be construed as requiring the disclosure under any circumstances of process or percentage of mixture information which is trade secret.
(g) Employee information. (1) Upon an employee's first entering into employment, and at least annually thereafter, each employer shall inform current employees covered by this section of the following:
(i) The existence, location, and availability of any records covered by this section;
(ii) The person responsible for maintaining and providing access to records; and
(iii) Each employee's rights of access to these records.
(2) Each employer shall keep a copy of this section and its appendices, and make copies readily available, upon request, to employees. The employer shall also distribute to current employees any informational materials concerning this section which are made available to the employer by the Assistant Secretary of Labor for Occupational Safety and Health.
(h) Transfer of records. (1) Whenever an employer is ceasing to do business, the employer shall transfer all records subject to this section to the successor employer. The successor employer shall receive and maintain these records.
(2) Whenever an employer is ceasing to do business and there is no successor employer to receive and maintain the records subject to this standard, the employer shall notify affected current employees of their rights of access to records at least three (3) months prior to the cessation of the employer's business.
(i) Appendices. The information contained in appendices A and B to this section is not intended, by itself, to create any additional obligations not otherwise imposed by this section nor detract from any existing obligation.
I, _____ (full name of worker/patient), hereby authorize ______ (individual or organization holding the medical records) to release to ______ (individual or organization authorized to receive the medical information), the following medical information from my personal medical records:
I give my permission for this medical information to be used for the following purpose:
Several extra lines are provided below so that you can place additional restrictions on this authorization letter if you want to. You may, however, leave these lines blank. On the other hand, you may want to (1) specify a particular expiration date for this letter (if less than one year); (2) describe medical information to be created in the future that you intend to be covered by this authorization letter; or (3) describe portions of the medical information in your records which you do not intend to be released as a result of this letter.)
The final regulation, 29 CFR 1910.20, applies to all employee exposure and medical records, and analyses thereof, of employees exposed to toxic substances or harmful physical agents (paragraph (b)(2)). The term toxic substance or harmful physical agent is defined by paragraph (c)(13) to encompass chemical substances, biological agents, and physical stresses for which there is evidence of harmful health effects. The regulation uses the latest printed edition of the National Institute for Occupational Safety and Health (NIOSH) Registry of Toxic Effects of Chemical Substances (RTECS) as one of the chief sources of information as to whether evidence of harmful health effects exists. If a substance is listed in the latest printed RTECS, the regulation applies to exposure and medical records (and analyses of these records) relevant to employees exposed to the substance.
It is appropriate to note that the final regulation does not require that employers purchase a copy of RTECS, and many employers need not consult RTECS to ascertain whether their employee exposure or medical records are subject to the rule. Employers who do not currently have the latest printed edition of the NIOSH RTECS, however, may desire to obtain a copy. The RTECS is issued in an annual printed edition as mandated by section 20(a)(6) of the Occupational Safety and Health Act (29 U.S.C. 669(a)(6)).
The Introduction to the 1980 printed edition describes the RTECS as follows:
“The 1980 edition of the Registry of Toxic Effects of Chemical Substances, formerly known as the Toxic Substances list, is the ninth revision prepared in compliance with the requirements of Section 20(a)(6) of the Occupational Safety and Health Act of 1970 (Public Law 91-596). The original list was completed on June 28, 1971, and has been updated annually in book format. Beginning in October 1977, quarterly revisions have been provided in microfiche. This edition of the Registry contains 168,096 listings of chemical substances: 45,156 are names of different chemicals with their associated toxicity data and 122,940 are synonyms. This edition includes approximately 5,900 new chemical compounds that did not appear in the 1979 Registry. (p. xi)
“The Registry's purposes are many, and it serves a variety of users. It is a single source document for basic toxicity information and for other data, such as chemical identifiers ad information necessary for the preparation of safety directives and hazard evaluations for chemical substances. The various types of toxic effects linked to literature citations provide researchers and occupational health scientists with an introduction to the toxicological literature, making their own review of the toxic hazards of a given substance easier. By presenting data on the lowest reported doses that produce effects by several routes of entry in various species, the Registry furnishes valuable information to those responsible for preparing safety data sheets for chemical substances in the workplace. Chemical and production engineers can use the Registry to identify the hazards which may be associated with chemical intermediates in the development of final products, and thus can more readily select substitutes or alternative processes which may be less hazardous. Some organizations, including health agencies and chemical companies, have included the NIOSH Registry accession numbers with the listing of chemicals in their files to reference toxicity information associated with those chemicals. By including foreign language chemical names, a start has been made toward providing rapid identification of substances produced in other countries. (p. xi)
“In this edition of the Registry, the editors intend to identify “all known toxic substances” which may exist in the environment and to provide pertinent data on the toxic effects from known doses entering an organism by any route described. (p xi)
“It must be reemphasized that the entry of a substance in the Registry does not automatically mean that it must be avoided. A listing does mean, however, that the substance has the documented potential of being harmful if misused, and care must be exercised to prevent tragic consequences. Thus, the Registry lists many substances that are common in everyday life and are in nearly every household in the United States. One can name a variety of such dangerous substances: prescription and non-prescription drugs; food additives; pesticide concentrates, sprays, and dusts; fungicides; herbicides; paints; glazes, dyes; bleaches and other household cleaning agents; alkalies; and various solvents and diluents. The list is extensive because chemicals have become an integral part of our existence.”
The RTECS printed edition may be purchased from the Superintendent of Documents, U.S. Government Printing Office (GPO), Washington, DC 20402 (202-783-3238).
Some employers may desire to subscribe to the quarterly update to the RTECS which is published in a microfiche edition. An annual subscription to the quarterly microfiche may be purchased from the GPO (Order the “Microfiche Edition, Registry of Toxic Effects of Chemical Substances”). Both the printed edition and the microfiche edition of RTECS are available for review at many university and public libraries throughout the country. The latest RTECS editions may also be examined at the OSHA Technical Data Center, Room N2439—Rear, United States Department of Labor, 200 Constitution Avenue, NW., Washington, DC 20210 (202-523-9700), or at any OSHA Regional or Area Office (See, major city telephone directories under United States Government-Labor Department).
§ 1910.1024 - Beryllium.
(a) Scope and application. (1) This standard applies to occupational exposure to beryllium in all forms, compounds, and mixtures in general industry, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of this standard.
(2) This standard does not apply to articles, as defined in the Hazard Communication standard (HCS) (§ 1910.1200(c)), that contain beryllium and that the employer does not process.
(3) This standard does not apply to materials containing less than 0.1% beryllium by weight where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions.
(b) Definitions. As used in this standard:
Action level means a concentration of airborne beryllium of 0.1 micrograms per cubic meter of air (µg/m
Airborne exposure and airborne exposure to beryllium mean the exposure to airborne beryllium that would occur if the employee were not using a respirator.
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, United States Department of Labor, or designee.
Beryllium lymphocyte proliferation test (BeLPT) means the measurement of blood lymphocyte proliferation in a laboratory test when lymphocytes are challenged with a soluble beryllium salt.
Beryllium sensitization means a response in the immune system of a specific individual who has been exposed to beryllium. There are no associated physical or clinical symptoms and no illness or disability with beryllium sensitization alone, but the response that occurs through beryllium sensitization can enable the immune system to recognize and react to beryllium. While not every beryllium-sensitized person will develop chronic beryllium disease (CBD), beryllium sensitization is essential for development of CBD.
Beryllium work area means any work area where materials that contain at least 0.1 percent beryllium by weight are processed either:
(1) During any of the operations listed in Appendix A of this standard; or
(2) Where employees are, or can reasonably be expected to be, exposed to airborne beryllium at or above the action level.
CBD diagnostic center means a medical diagnostic center that has a pulmonologist or pulmonary specialist on staff and on-site facilities to perform a clinical evaluation for the presence of chronic beryllium disease (CBD). The CBD diagnostic center must have the capacity to perform pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must also have the capacity to transfer BAL samples to a laboratory for appropriate diagnostic testing within 24 hours. The pulmonologist or pulmonary specialist must be able to interpret the biopsy pathology and the BAL diagnostic test results.
Chronic beryllium disease (CBD) means a chronic granulomatous lung disease caused by inhalation of airborne beryllium by an individual who is beryllium sensitized.
Confirmed positive means the person tested has had two abnormal BeLPT test results, an abnormal and a borderline test result, or three borderline test results, obtained from tests conducted within a three-year period. It also means the result of a more reliable and accurate test indicating a person has been identified as having beryllium sensitization.
Contaminated with beryllium and beryllium-contaminated mean contaminated with dust, fumes, mists, or solutions containing beryllium in concentrations greater than or equal to 0.1 percent by weight.
Dermal contact with beryllium means skin exposure to:
(1) Soluble beryllium compounds containing beryllium in concentrations greater than or equal to 0.1 percent by weight;
(2) Solutions containing beryllium in concentrations greater than or equal to 0.1 percent by weight; or
(3) Visible dust, fumes, or mists containing beryllium in concentrations greater than or equal to 0.1 percent by weight. The handling of beryllium materials in non-particulate solid form that are free from visible dust containing beryllium in concentrations greater than or equal to 0.1 percent by weight is not considered dermal contact under the standard.
Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee.
Emergency means any occurrence such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment, which may or does result in an uncontrolled and unintended release of airborne beryllium that presents a significant hazard.
High-efficiency particulate air (HEPA) filter means a filter that is at least 99.97 percent efficient in removing particles 0.3 micrometers in diameter.
Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer's current operations.
Physician or other licensed health care professional (PLHCP) means an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows the individual to independently provide or be delegated the responsibility to provide some or all of the health care services required by paragraph (k) of this standard.
Regulated area means an area, including temporary work areas where maintenance or non-routine tasks are performed, where an employee's airborne exposure exceeds, or can reasonably be expected to exceed, either the time-weighted average (TWA) permissible exposure limit (PEL) or short term exposure limit (STEL).
This standard means this beryllium standard, 29 CFR 1910.1024.
(c) Permissible Exposure Limits (PELs)—(1) Time-weighted average (TWA) PEL. The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 0.2 µg/m
(2) Short-term exposure limit (STEL). The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 2.0 µg/m
(d) Exposure assessment—(1) General. The employer must assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium in accordance with either the performance option in paragraph (d)(2) or the scheduled monitoring option in paragraph (d)(3) of this standard.
(2) Performance option. The employer must assess the 8-hour TWA exposure and the 15-minute short-term exposure for each employee on the basis of any combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium.
(3) Scheduled monitoring option. (i) The employer must perform initial monitoring to assess the 8-hour TWA exposure for each employee on the basis of one or more personal breathing zone air samples that reflect the airborne exposure of employees on each shift, for each job classification, and in each work area.
(ii) The employer must perform initial monitoring to assess the short-term exposure from 15-minute personal breathing zone air samples measured in operations that are likely to produce airborne exposure above the STEL for each work shift, for each job classification, and in each work area.
(iii) Where several employees perform the same tasks on the same shift and in the same work area, the employer may sample a representative fraction of these employees in order to meet the requirements of this paragraph (d)(3). In representative sampling, the employer must sample the employee(s) expected to have the highest airborne exposure to beryllium.
(iv) If initial monitoring indicates that airborne exposure is below the action level and at or below the STEL, the employer may discontinue monitoring for those employees whose airborne exposure is represented by such monitoring.
(v) Where the most recent exposure monitoring indicates that airborne exposure is at or above the action level but at or below the TWA PEL, the employer must repeat such monitoring within six months of the most recent monitoring.
(vi) Where the most recent exposure monitoring indicates that airborne exposure is above the TWA PEL, the employer must repeat such monitoring within three months of the most recent 8-hour TWA exposure monitoring.
(vii) Where the most recent (non-initial) exposure monitoring indicates that airborne exposure is below the action level, the employer must repeat such monitoring within six months of the most recent monitoring until two consecutive measurements, taken 7 or more days apart, are below the action level, at which time the employer may discontinue 8-hour TWA exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard.
(viii) Where the most recent exposure monitoring indicates that airborne exposure is above the STEL, the employer must repeat such monitoring within three months of the most recent short-term exposure monitoring until two consecutive measurements, taken 7 or more days apart, are below the STEL, at which time the employer may discontinue short-term exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard.
(4) Reassessment of exposure. The employer must reassess airborne exposure whenever a change in the production, process, control equipment, personnel, or work practices may reasonably be expected to result in new or additional airborne exposure at or above the action level or STEL, or when the employer has any reason to believe that new or additional airborne exposure at or above the action level or STEL has occurred.
(5) Methods of sample analysis. The employer must ensure that all air monitoring samples used to satisfy the monitoring requirements of paragraph (d) of this standard are evaluated by a laboratory that can measure beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level.
(6) Employee notification of assessment results. (i) Within 15 working days after completing an exposure assessment in accordance with paragraph (d) of this standard, the employer must notify each employee whose airborne exposure is represented by the assessment of the results of that assessment individually in writing or post the results in an appropriate location that is accessible to each of these employees.
(ii) Whenever an exposure assessment indicates that airborne exposure is above the TWA PEL or STEL, the employer must describe in the written notification the corrective action being taken to reduce airborne exposure to or below the exposure limit(s) exceeded where feasible corrective action exists but had not been implemented when the monitoring was conducted.
(7) Observation of monitoring. (i) The employer must provide an opportunity to observe any exposure monitoring required by this standard to each employee whose airborne exposure is measured or represented by the monitoring and each employee's representative(s).
(ii) When observation of monitoring requires entry into an area where the use of personal protective clothing or equipment (which may include respirators) is required, the employer must provide each observer with appropriate personal protective clothing and equipment at no cost to the observer and must ensure that each observer uses such clothing and equipment.
(iii) The employer must ensure that each observer follows all other applicable safety and health procedures.
(e) Beryllium work areas and regulated areas—(1) Establishment. (i) The employer must establish and maintain a beryllium work area wherever the criteria for a “beryllium work area” set forth in paragraph (b) of this standard are met.
(ii) The employer must establish and maintain a regulated area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL.
(2) Demarcation. (i) The employer must identify each beryllium work area through signs or any other methods that adequately establish and inform each employee of the boundaries of each beryllium work area.
(ii) The employer must identify each regulated area in accordance with paragraph (m)(2) of this standard.
(3) Access. The employer must limit access to regulated areas to:
(i) Persons the employer authorizes or requires to be in a regulated area to perform work duties;
(ii) Persons entering a regulated area as designated representatives of employees for the purpose of exercising the right to observe exposure monitoring procedures under paragraph (d)(7) of this standard; and
(iii) Persons authorized by law to be in a regulated area.
(4) Provision of personal protective clothing and equipment, including respirators. The employer must provide and ensure that each employee entering a regulated area uses:
(i) Respiratory protection in accordance with paragraph (g) of this standard; and
(ii) Personal protective clothing and equipment in accordance with paragraph (h) of this standard.
(f) Methods of compliance—(1) Written exposure control plan. (i) The employer must establish, implement, and maintain a written exposure control plan, which must contain:
(A) A list of operations and job titles reasonably expected to involve airborne exposure to or dermal contact with beryllium;
(B) A list of operations and job titles reasonably expected to involve airborne exposure at or above the action level;
(C) A list of operations and job titles reasonably expected to involve airborne exposure above the TWA PEL or STEL;
(D) Procedures for minimizing cross-contamination, including the transfer of beryllium between surfaces, equipment, clothing, materials, and articles within beryllium work areas;
(E) Procedures for keeping surfaces as free as practicable of beryllium;
(F) Procedures for minimizing the migration of beryllium from beryllium work areas to other locations within or outside the workplace;
(G) A list of engineering controls, work practices, and respiratory protection required by paragraph (f)(2) of this standard;
(H) A list of personal protective clothing and equipment required by paragraph (h) of this standard; and
(I) Procedures for removing, laundering, storing, cleaning, repairing, and disposing of beryllium-contaminated personal protective clothing and equipment, including respirators.
(ii) The employer must review and evaluate the effectiveness of each written exposure control plan at least annually and update it, as necessary, when:
(A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results, or can reasonably be expected to result, in new or additional airborne exposure to beryllium;
(B) The employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of this standard, referred for evaluation at a CBD diagnostic center, or shows signs or symptoms associated with exposure to beryllium; or
(C) The employer has any reason to believe that new or additional airborne exposure is occurring or will occur.
(iii) The employer must make a copy of the written exposure control plan accessible to each employee who is, or can reasonably be expected to be, exposed to airborne beryllium in accordance with OSHA's Access to Employee Exposure and Medical Records (Records Access) standard (§ 1910.1020(e)).
(2) Engineering and work practice controls. (i) The employer must use engineering and work practice controls to reduce and maintain employee airborne exposure to beryllium to or below the PEL and STEL, unless the employer can demonstrate that such controls are not feasible. Wherever the employer demonstrates that it is not feasible to reduce airborne exposure to or below the PELs with engineering and work practice controls, the employer must implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls using respiratory protection in accordance with paragraph (g) of this standard.
(ii) For each operation in a beryllium work area that releases airborne beryllium, the employer must ensure that at least one of the following is in place to reduce airborne exposure:
(A) Material and/or process substitution;
(B) Isolation, such as ventilated partial or full enclosures;
(C) Local exhaust ventilation, such as at the points of operation, material handling, and transfer; or
(D) Process control, such as wet methods and automation.
(iii) An employer is exempt from using the controls listed in paragraph (f)(2)(ii) of this standard to the extent that:
(A) The employer can establish that such controls are not feasible; or
(B) The employer can demonstrate that airborne exposure is below the action level, using no fewer than two representative personal breathing zone samples taken at least 7 days apart, for each affected operation.
(3) Prohibition of rotation. The employer must not rotate employees to different jobs to achieve compliance with the PELs.
(g) Respiratory protection—(1) General. The employer must provide respiratory protection at no cost to the employee and ensure that each employee uses respiratory protection:
(i) During periods necessary to install or implement feasible engineering and work practice controls where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL;
(ii) During operations, including maintenance and repair activities and non-routine tasks, when engineering and work practice controls are not feasible and airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL;
(iii) During operations for which an employer has implemented all feasible engineering and work practice controls when such controls are not sufficient to reduce airborne exposure to or below the TWA PEL or STEL;
(iv) During emergencies; and
(v) When an employee who is eligible for medical removal under paragraph (l)(1) chooses to remain in a job with airborne exposure at or above the action level, as permitted by paragraph (l)(2)(ii) of this standard.
(2) Respiratory protection program. Where this standard requires an employer to provide respiratory protection, the selection and use of such respiratory protection must be in accordance with the Respiratory Protection standard (§ 1910.134).
(3) The employer must provide at no cost to the employee a powered air-purifying respirator (PAPR) instead of a negative pressure respirator when:
(i) Respiratory protection is required by this standard;
(ii) An employee entitled to such respiratory protection requests a PAPR; and
(iii) The PAPR provides adequate protection to the employee in accordance with paragraph (g)(2) of this standard.
(h) Personal protective clothing and equipment—(1) Provision and use. The employer must provide at no cost, and ensure that each employee uses, appropriate personal protective clothing and equipment in accordance with the written exposure control plan required under paragraph (f)(1) of this standard and OSHA's Personal Protective Equipment standards (subpart I of this part):
(i) Where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; or
(ii) Where there is a reasonable expectation of dermal contact with beryllium.
(2) Removal and storage. (i) The employer must ensure that each employee removes all beryllium-contaminated personal protective clothing and equipment at the end of the work shift, at the completion of all tasks involving beryllium, or when personal protective clothing or equipment becomes visibly contaminated with beryllium, whichever comes first.
(ii) The employer must ensure that each employee removes beryllium-contaminated personal protective clothing and equipment as specified in the written exposure control plan required by paragraph (f)(1) of this standard.
(iii) The employer must ensure that each employee stores and keeps beryllium-contaminated personal protective clothing and equipment separate from street clothing and that storage facilities prevent cross-contamination as specified in the written exposure control plan required by paragraph (f)(1) of this standard.
(iv) The employer must ensure that no employee removes beryllium-contaminated personal protective clothing or equipment from the workplace, except for employees authorized to do so for the purposes of laundering, cleaning, maintaining or disposing of beryllium-contaminated personal protective clothing and equipment at an appropriate location or facility away from the workplace.
(v) When personal protective clothing or equipment required by this standard is removed from the workplace for laundering, cleaning, maintenance or disposal, the employer must ensure that personal protective clothing and equipment are stored and transported in sealed bags or other closed containers that are impermeable and are labeled in accordance with paragraph (m)(3) of this standard and the HCS (§ 1910.1200).
(3) Cleaning and replacement. (i) The employer must ensure that all reusable personal protective clothing and equipment required by this standard is cleaned, laundered, repaired, and replaced as needed to maintain its effectiveness.
(ii) The employer must ensure that beryllium is not removed from beryllium-contaminated personal protective clothing and equipment by blowing, shaking, or any other means that disperses beryllium into the air.
(iii) The employer must inform in writing the persons or the business entities who launder, clean, or repair the personal protective clothing or equipment required by this standard of the potentially harmful effects of exposure to beryllium and that the personal protective clothing and equipment must be handled in accordance with this standard.
(i) Hygiene areas and practices—(1) General. For each employee working in a beryllium work area or who can reasonably be expected to have dermal contact with beryllium, the employer must:
(i) Provide readily accessible washing facilities in accordance with this standard and the Sanitation standard (§ 1910.141) to remove beryllium from the hands, face, and neck; and
(ii) Ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet.
(2) Change rooms. In addition to the requirements of paragraph (i)(1)(i) of this standard, the employer must provide employees who are required to use personal protective clothing or equipment under paragraph (h)(1)(ii) of this standard with a designated change room in accordance with this standard and the Sanitation standard (§ 1910.141) where employees are required to remove their personal clothing.
(3) Showers. (i) The employer must provide showers in accordance with the Sanitation standard (§ 1910.141) where:
(A) Airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; and
(B) Employee's hair or body parts other than hands, face, and neck can reasonably be expected to become contaminated with beryllium.
(ii) Employers required to provide showers under paragraph (i)(3)(i) of this standard must ensure that each employee showers at the end of the work shift or work activity if:
(A) The employee reasonably could have had airborne exposure above the TWA PEL or STEL; and
(B) The employee's hair or body parts other than hands, face, and neck could reasonably have become contaminated with beryllium.
(4) Eating and drinking areas. Wherever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that:
(i) Beryllium-contaminated surfaces in eating and drinking areas are as free as practicable of beryllium;
(ii) No employees enter any eating or drinking area with beryllium-contaminated personal protective clothing or equipment unless, prior to entry, it is cleaned, as necessary, to be as free as practicable of beryllium by methods that do not disperse beryllium into the air or onto an employee's body; and
(iii) Eating and drinking facilities provided by the employer are in accordance with the Sanitation standard (§ 1910.141).
(5) Prohibited activities. The employer must ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas.
(j) Housekeeping—(1) General. (i) The employer must maintain all surfaces in beryllium work areas and regulated areas as free as practicable of beryllium and in accordance with the written exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of this standard; and
(ii) The employer must ensure that all spills and emergency releases of beryllium are cleaned up promptly and in accordance with the written exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of this standard.
(2) Cleaning methods.
(i) The employer must ensure that surfaces in beryllium work areas and regulated areas are cleaned by HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure.
(ii) The employer must not allow dry sweeping or brushing for cleaning surfaces in beryllium work areas or regulated areas unless HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective.
(iii) The employer must not allow the use of compressed air for cleaning beryllium-contaminated surfaces unless the compressed air is used in conjunction with a ventilation system designed to capture the particulates made airborne by the use of compressed air.
(iv) Where employees use dry sweeping, brushing, or compressed air to clean beryllium-contaminated surfaces, the employer must provide, and ensure that each employee uses, respiratory protection and personal protective clothing and equipment in accordance with paragraphs (g) and (h) of this standard.
(v) The employer must ensure that cleaning equipment is handled and maintained in a manner that minimizes the likelihood and level of airborne exposure and the re-entrainment of airborne beryllium in the workplace.
(3) Disposal, recycling, and reuse. (i) Except for intra-plant transfers, when the employer transfers materials that contain at least 0.1 percent beryllium by weight or are contaminated with beryllium for disposal, recycling, or reuse, the employer must label the materials in accordance with paragraph (m)(3) of this standard;
(ii) Except for intra-plant transfers, materials designated for disposal that contain at least 0.1 percent beryllium by weight or are contaminated with beryllium must be cleaned to be as free as practicable of beryllium or placed in enclosures that prevent the release of beryllium-containing particulate or solutions under normal conditions of use, storage, or transport, such as bags or containers; and
(iii) Except for intra-plant transfers, materials designated for recycling or reuse that contain at least 0.1 percent beryllium by weight or are contaminated with beryllium must be cleaned to be as free as practicable of beryllium or placed in enclosures that prevent the release of beryllium-containing particulate or solutions under normal conditions of use, storage, or transport, such as bags or containers.
(k) Medical surveillance—(1) General. (i) The employer must make medical surveillance required by this paragraph available at no cost to the employee, and at a reasonable time and place, to each employee:
(A) Who is or is reasonably expected to be exposed at or above the action level for more than 30 days per year;
(B) Who shows signs or symptoms of CBD or other beryllium-related health effects;
(C) Who is exposed to beryllium during an emergency; or
(D) Whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) of this standard recommends periodic medical surveillance.
(ii) The employer must ensure that all medical examinations and procedures required by this standard are performed by, or under the direction of, a licensed physician.
(2) Frequency. The employer must provide a medical examination:
(i) Within 30 days after determining that:
(A) An employee meets the criteria of paragraph (k)(1)(i)(A), unless the employee has received a medical examination, provided in accordance with this standard, within the last two years; or
(B) An employee meets the criteria of paragraph (k)(1)(i)(B) of this standard.
(ii) At least every two years thereafter for each employee who continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) of this standard.
(iii) At the termination of employment for each employee who meets any of the criteria of paragraph (k)(1)(i) of this standard at the time the employee's employment terminates, unless an examination has been provided in accordance with this standard during the six months prior to the date of termination. Each employee who meets the criteria of paragraph (k)(1)(i)(C) of this standard and who has not received an examination since exposure to beryllium during the emergency must be provided an examination at the time the employee's employment terminates.
(iv) For an employee who meets the criteria of paragraph (k)(1)(i)(C) of this standard:
(A) If that employee has not received a medical examination within the previous two years pursuant to paragraph (k)(1)(i) of this standard, then within 30 days after the employee meets the criteria of paragraph (k)(1)(i)(C) of this standard; or
(B) If that employee has received a medical examination within the previous two years pursuant to paragraph (k)(1)(i) of this standard, then at least one year but no more than two years after the employee meets the criteria of paragraph (k)(1)(i)(C) of this standard.
(3) Contents of examination. (i) The employer must ensure that the PLHCP conducting the examination advises the employee of the risks and benefits of participating in the medical surveillance program and the employee's right to opt out of any or all parts of the medical examination.
(ii) The employer must ensure that the employee is offered a medical examination that includes:
(A) A medical and work history, with emphasis on past and present airborne exposure to or dermal contact with beryllium, smoking history, and any history of respiratory system dysfunction;
(B) A physical examination with emphasis on the respiratory system;
(C) A physical examination for skin rashes;
(D) Pulmonary function tests, performed in accordance with the guidelines established by the American Thoracic Society including forced vital capacity (FVC) and forced expiratory volume in one second (FEV
(E) A standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a follow-up BeLPT must be offered within 30 days, unless the employee has been confirmed positive. Samples must be analyzed in a laboratory certified under the College of American Pathologists/Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform the BeLPT.
(F) A low dose computed tomography (LDCT) scan, when recommended by the PLHCP after considering the employee's history of exposure to beryllium along with other risk factors, such as smoking history, family medical history, sex, age, and presence of existing lung disease; and
(G) Any other test deemed appropriate by the PLHCP.
(4) Information provided to the PLHCP. The employer must ensure that the examining PLHCP (and the agreed-upon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of this standard) has a copy of this standard and must provide the following information, if known:
(i) A description of the employee's former and current duties that relate to the employee's airborne exposure to and dermal contact with beryllium;
(ii) The employee's former and current levels of airborne exposure;
(iii) A description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how long the employee has used that personal protective clothing and equipment; and
(iv) Information from records of employment-related medical examinations previously provided to the employee, currently within the control of the employer, after obtaining written consent from the employee.
(5) Licensed physician's written medical report for the employee. The employer must ensure that the employee receives a written medical report from the licensed physician within 45 days of the examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) and that the PLHCP explains the results of the examination to the employee. The written medical report must contain:
(i) A statement indicating the results of the medical examination, including the licensed physician's opinion as to whether the employee has:
(A) Any detected medical condition, such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as defined in paragraph (b) of this standard), that may place the employee at increased risk from further airborne exposure, and
(B) Any medical conditions related to airborne exposure that require further evaluation or treatment.
(ii) Any recommendations on:
(A) The employee's use of respirators, protective clothing, or equipment; or
(B) Limitations on the employee's airborne exposure to beryllium.
(iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, the written report must also contain a referral for an evaluation at a CBD diagnostic center.
(iv) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for continued periodic medical surveillance.
(v) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l) of this standard.
(6) Licensed physician's written medical opinion for the employer. (i) The employer must obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). The written medical opinion must contain only the following:
(A) The date of the examination;
(B) A statement that the examination has met the requirements of this standard;
(C) Any recommended limitations on the employee's use of respirators, protective clothing, or equipment; and
(D) A statement that the PLHCP has explained the results of the medical examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment;
(ii) If the employee provides written authorization, the written opinion must also contain any recommended limitations on the employee's airborne exposure to beryllium.
(iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, and the employee provides written authorization, the written opinion must also contain a referral for an evaluation at a CBD diagnostic center.
(iv) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for continued periodic medical surveillance.
(v) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l) of this standard.
(vi) The employer must ensure that each employee receives a copy of the written medical opinion described in paragraph (k)(6) of this standard within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) performed for that employee.
(7) CBD diagnostic center. (i) The employer must provide an evaluation at no cost to the employee at a CBD diagnostic center that is mutually agreed upon by the employer and the employee. The evaluation at the CBD diagnostic center must be scheduled within 30 days, and must occur within a reasonable time, of:
(A) The employer's receipt of a physician's written medical opinion to the employer that recommends referral to a CBD diagnostic center; or
(B) The employee presenting to the employer a physician's written medical report indicating that the employee has been confirmed positive or diagnosed with CBD, or recommending referral to a CBD diagnostic center.
(ii) The employer must ensure that, as part of the evaluation, the employee is offered any tests deemed appropriate by the examining physician at the CBD diagnostic center, such as pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. If any of the tests deemed appropriate by the examining physician are not available at the CBD diagnostic center, they may be performed at another location that is mutually agreed upon by the employer and the employee.
(iii) The employer must ensure that the employee receives a written medical report from the CBD diagnostic center that contains all the information required in paragraph (k)(5)(i), (ii), (iv), and (v) of this standard and that the PLHCP explains the results of the examination to the employee within 30 days of the examination.
(iv) The employer must obtain a written medical opinion from the CBD diagnostic center within 30 days of the medical examination. The written medical opinion must contain only the information in paragraph (k)(6)(i), as applicable, unless the employee provides written authorization to release additional information. If the employee provides written authorization, the written opinion must also contain the information from paragraphs (k)(6)(ii), (iv), and (v), if applicable.
(v) The employer must ensure that each employee receives a copy of the written medical opinion from the CBD diagnostic center described in paragraph (k)(7) of this standard within 30 days of any medical examination performed for that employee.
(vi) After an employee has received the initial clinical evaluation at a CBD diagnostic center described in paragraphs (k)(7)(i) and (ii) of this standard, the employee may choose to have any subsequent medical examinations for which the employee is eligible under paragraph (k) of this standard performed at a CBD diagnostic center mutually agreed upon by the employer and the employee, and the employer must provide such examinations at no cost to the employee.
(l) Medical removal. (1) An employee is eligible for medical removal, if the employee works in a job with airborne exposure at or above the action level and either:
(i) The employee provides the employer with:
(A) A written medical report indicating a confirmed positive finding or CBD diagnosis; or
(B) A written medical report recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(5)(v) or (k)(7)(iii) of this standard; or
(ii) The employer receives a written medical opinion recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(6)(v) or (k)(7)(iv) of this standard.
(2) If an employee is eligible for medical removal, the employer must provide the employee with the employee's choice of:
(i) Removal as described in paragraph (l)(3) of this standard; or
(ii) Remaining in a job with airborne exposure at or above the action level, provided that the employer provides, and ensures that the employee uses, respiratory protection that complies with paragraph (g) of this standard whenever airborne exposures are at or above the action level.
(3) If the employee chooses removal:
(i) If a comparable job is available where airborne exposures to beryllium are below the action level, and the employee is qualified for that job or can be trained within one month, the employer must remove the employee to that job. The employer must maintain for six months from the time of removal the employee's base earnings, seniority, and other rights and benefits that existed at the time of removal.
(ii) If comparable work is not available, the employer must maintain the employee's base earnings, seniority, and other rights and benefits that existed at the time of removal for six months or until such time that comparable work described in paragraph (l)(3)(i) becomes available, whichever comes first.
(4) The employer's obligation to provide medical removal protection benefits to a removed employee shall be reduced to the extent that the employee receives compensation for earnings lost during the period of removal from a publicly or employer-funded compensation program, or receives income from another employer made possible by virtue of the employee's removal.
(m) Communication of hazards—(1) General. (i) Chemical manufacturers, importers, distributors, and employers must comply with all requirements of the HCS (§ 1910.1200) for beryllium.
(ii) In classifying the hazards of beryllium, at least the following hazards must be addressed: Cancer; lung effects (CBD and acute beryllium disease); beryllium sensitization; skin sensitization; and skin, eye, and respiratory tract irritation.
(iii) Employers must include beryllium in the hazard communication program established to comply with the HCS. Employers must ensure that each employee has access to labels on containers of beryllium and to safety data sheets, and is trained in accordance with the requirements of the HCS (§ 1910.1200) and paragraph (m)(4) of this standard.
(2) Warning signs. (i) Posting. The employer must provide and display warning signs at each approach to a regulated area so that each employee is able to read and understand the signs and take necessary protective steps before entering the area.
(ii) Sign specification. (A) The employer must ensure that the warning signs required by paragraph (m)(2)(i) of this standard are legible and readily visible.
(B) The employer must ensure each warning sign required by paragraph (m)(2)(i) of this standard bears the following legend:
(3) Warning labels. Consistent with the HCS (§ 1910.1200), the employer must label each immediate container of clothing, equipment, and materials contaminated with beryllium, and must, at a minimum, include the following on the label:
(4) Employee information and training. (i) For each employee who has, or can reasonably be expected to have, airborne exposure to or dermal contact with beryllium:
(A) The employer must provide information and training in accordance with the HCS (§ 1910.1200(h));
(B) The employer must provide initial training to each employee by the time of initial assignment; and
(C) The employer must repeat the training required under this standard annually for each employee.
(ii) The employer must ensure that each employee who is, or can reasonably be expected to be, exposed to airborne beryllium can demonstrate knowledge and understanding of the following:
(A) The health hazards associated with airborne exposure to and dermal contact with beryllium, including the signs and symptoms of CBD;
(B) The written exposure control plan, with emphasis on the location(s) of beryllium work areas, including any regulated areas, and the specific nature of operations that could result in airborne exposure, especially airborne exposure above the TWA PEL or STEL;
(C) The purpose, proper selection, fitting, proper use, and limitations of personal protective clothing and equipment, including respirators;
(D) Applicable emergency procedures;
(E) Measures employees can take to protect themselves from airborne exposure to and dermal contact with beryllium, including personal hygiene practices;
(F) The purpose and a description of the medical surveillance program required by paragraph (k) of this standard including risks and benefits of each test to be offered;
(G) The purpose and a description of the medical removal protection provided under paragraph (l) of this standard;
(H) The contents of the standard; and
(I) The employee's right of access to records under the Records Access standard (§ 1910.1020).
(iii) When a workplace change (such as modification of equipment, tasks, or procedures) results in new or increased airborne exposure that exceeds, or can reasonably be expected to exceed, either the TWA PEL or the STEL, the employer must provide additional training to those employees affected by the change in airborne exposure.
(iv) Employee information. The employer must make a copy of this standard and its appendices readily available at no cost to each employee and designated employee representative(s).
(n) Recordkeeping—(1) Air monitoring data. (i) The employer must make and maintain a record of all exposure measurements taken to assess airborne exposure as prescribed in paragraph (d) of this standard.
(ii) This record must include at least the following information:
(A) The date of measurement for each sample taken;
(B) The task that is being monitored;
(C) The sampling and analytical methods used and evidence of their accuracy;
(D) The number, duration, and results of samples taken;
(E) The type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and
(F) The name and job classification of each employee represented by the monitoring, indicating which employees were actually monitored.
(iii) The employer must ensure that exposure records are maintained and made available in accordance with the Records Access standard (§ 1910.1020).
(2) Objective data. (i) Where an employer uses objective data to satisfy the exposure assessment requirements under paragraph (d)(2) of this standard, the employer must make and maintain a record of the objective data relied upon.
(ii) This record must include at least the following information:
(A) The data relied upon;
(B) The beryllium-containing material in question;
(C) The source of the objective data;
(D) A description of the process, task, or activity on which the objective data were based; and
(E) Other data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based.
(iii) The employer must ensure that objective data are maintained and made available in accordance with the Records Access standard (§ 1910.1020).
(3) Medical surveillance. (i) The employer must make and maintain a record for each employee covered by medical surveillance under paragraph (k) of this standard.
(ii) The record must include the following information about each employee:
(A) Name and job classification;
(B) A copy of all licensed physicians' written medical opinions for each employee; and
(C) A copy of the information provided to the PLHCP as required by paragraph (k)(4) of this standard.
(iii) The employer must ensure that medical records are maintained and made available in accordance with the Records Access standard (§ 1910.1020).
(4) Training. (i) At the completion of any training required by this standard, the employer must prepare a record that indicates the name and job classification of each employee trained, the date the training was completed, and the topic of the training.
(ii) This record must be maintained for three years after the completion of training.
(5) Access to records. Upon request, the employer must make all records maintained as a requirement of this standard available for examination and copying to the Assistant Secretary, the Director, each employee, and each employee's designated representative(s) in accordance the Records Access standard (§ 1910.1020).
(6) Transfer of records. The employer must comply with the requirements involving transfer of records set forth in the Records Access standard (§ 1910.1020).
(o) Dates—(1) Effective date. This standard shall become effective March 10, 2017.
(2) Compliance dates. (i) Obligations contained in paragraphs (c), (d), (g), (k), and (l) of this standard: March 12, 2018;
(ii) Change rooms and showers required by paragraph (i) of this standard: March 11, 2019;
(iii) Engineering controls required by paragraph (f) of this standard: March 10, 2020; and
(iv) All other obligations of this standard: December 12, 2018.
(p) Appendix. Table A.1 in this appendix sets forth the operations that, where performed under the circumstances described in the column heading above the particular operations, trigger the requirement for a beryllium work area.
Paragraph (b) of this standard defines a beryllium work area as any work area where materials that contain at least 0.1 percent beryllium by weight are processed (1) during any of the operations listed in Appendix A of this standard, or (2) where employees are, or can reasonably be expected to be, exposed to airborne beryllium at or above the action level. Table A.1 in this appendix sets forth the operations that, where performed under the circumstances described in the column heading above the particular operations, trigger the requirement for a beryllium work area.
Table A.1—Operations for Establishing Beryllium Work Areas Where Processing Materials Containing at Least 0.1 Percent Beryllium by Weight
Beryllium metal alloy operations
(generally <10% beryllium by weight) | Beryllium composite operations
(generally >10% beryllium by weight) and beryllium metal operations | Beryllium oxide operations |
---|---|---|
Abrasive Blasting. | Abrasive Blasting. | Abrasive Blasting. |
Abrasive Processing. | Abrasive Processing. | Abrasive Processing. |
Abrasive Sawing. | Abrasive Sawing. | Abrasive Sawing. |
Annealing. | Annealing. | Boring. |
Bright Cleaning. | Atomizing. | Brazing (>1,100 °C). |
Brushing. | Attritioning. | Broaching with green ceramic. |
Buffing. | Blanking. | Brushing. |
Burnishing. | Bonding. | Buffing. |
Casting. | Boring. | Centerless grinding. |
Centerless Grinding. | Breaking. | Chemical Cleaning. |
Chemical Cleaning. | Bright Cleaning. | Chemical Etching. |
Chemical Etching. | Broaching. | CNC Machining. |
Chemical Milling. | Brushing. | Cold Isostatic Pressing (CIP). |
Dross Handling. | Buffing. | Crushing. |
Deburring (grinding). | Burnishing. | Cutting. |
Electrical Chemical Machining (ECM). | Casting. | Deburring (grinding). |
Electrical Discharge Machining (EDM). | Centerless Grinding. | Deburring (non-grinding). |
Extrusion. | Chemical Cleaning. | Destructive Testing. |
Forging. | Chemical Etching | Dicing. |
Grinding. | Chemical Milling. | Drilling. |
Heat Treating (in air). | CNC Machining | Dry/wet Tumbling. |
High Speed Machining (>10,000 rpm). | Cold Isostatic Pressing. | Extrusion. |
Hot Rolling. | Cold Pilger. | Filing by Hand. |
Lapping. | Crushing. | Firing of Green Ceramic. |
Laser Cutting. | Cutting. | Firing of Refractory Metallization (>1,100 °C). |
Laser Machining. | Deburring. | Grinding. |
Laser Scribing. | Dicing. | Honing. |
Laser Marking. | Drawing. | Hot Isostatic Pressing (HIP). |
Melting. | Drilling. | Lapping. |
Photo-Etching. | Dross Handling. | Laser Cutting. |
Pickling. | Electrical Chemical Machining (ECM). | Laser Machining. |
Point and Chamfer. | Electrical Discharge Machining (EDM). | Laser Scribing. |
Polishing. | Extrusion. | Laser Marking. |
Torch Cutting ( | Filing by Hand. | Machining. |
Tumbling. | Forging. | Milling. |
Water-jet Cutting. | Grinding. | Piercing. |
Welding. | Heading. | Mixing. |
Sanding. | Heat Treating. | Plasma Spray. |
Slab Milling. | Honing. | Polishing. |
Hot Isostatic Pressing (HIP). | Powder Handling. | |
Lapping. | Powder Pressing. | |
Laser Cutting. | Reaming. | |
Laser Machining. | Sanding. | |
Laser Scribing. | Sectioning. | |
Laser Marking. | Shearing. | |
Machining. | Sintering of Green Ceramic. | |
Melting. | Sintering of Refractory Metallization (>1,100 °C). | |
Milling. | Snapping. | |
Mixing. | Spray Drying. | |
Photo-Etching. | Tape Casting. | |
Pickling. | Turning. | |
Piercing. | Water Jet Cutting. | |
Pilger. | ||
Plasma Spray. | ||
Point and Chamfer. | ||
Polishing. | ||
Powder Handling. | ||
Powder Pressing. | ||
Pressing. | ||
Reaming. | ||
Roll Bonding. | ||
Rolling. | ||
Sanding. | ||
Sawing (tooth blade). | ||
Shearing. | ||
Sizing. | ||
Skiving. | ||
Slitting. | ||
Snapping. | ||
Sputtering. | ||
Stamping. | ||
Spray Drying. | ||
Tapping. | ||
Tensile Testing. | ||
Torch Cutting ( | ||
Trepanning. | ||
Tumbling | ||
Turning. | ||
Vapor Deposition. | ||
Water-Jet Cutting. | ||
Welding. |
§ 1910.1025 - Lead.
(a) Scope and application. (1) This section applies to all occupational exposure to lead, except as provided in paragraph (a)(2).
(2) This section does not apply to the construction industry or to agricultural operations covered by 29 CFR part 1928.
(b) Definitions. Action level means employee exposure, without regard to the use of respirators, to an airborne concentration of lead of 30 micrograms per cubic meter of air (30 µg/m
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Director means the Director, National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health, Education, and Welfare, or designee.
Lead means metallic lead, all inorganic lead compounds, and organic lead soaps. Excluded from this definition are all other organic lead compounds.
(c) Permissible exposure limit (PEL). (1) The employer shall assure that no employee is exposed to lead at concentrations greater than fifty micrograms per cubic meter of air (50 µg/m
(2) If an employee is exposed to lead for more than 8 hours in any work day, the permissible exposure limit, as a time weighted average (TWA) for that day, shall be reduced according to the following formula:
(3) When respirators are used to supplement engineering and work practice controls to comply with the PEL and all the requirements of paragraph (f) have been met, employee exposure, for the purpose of determining whether the employer has complied with the PEL, may be considered to be at the level provided by the protection factor of the respirator for those periods the respirator is worn. Those periods may be averaged with exposure levels during periods when respirators are not worn to determine the employee's daily TWA exposure.
(d) Exposure monitoring—(1) General. (i) For the purposes of paragraph (d), employee exposure is that exposure which would occur if the employee were not using a respirator.
(ii) With the exception of monitoring under paragraph (d)(3), the employer shall collect full shift (for at least 7 continuous hours) personal samples including at least one sample for each shift for each job classification in each work area.
(iii) Full shift personal samples shall be representative of the monitored employee's regular, daily exposure to lead.
(2) Initial determination. Each employer who has a workplace or work operation covered by this standard shall determine if any exployee may be exposed to lead at or above the action level.
(3) Basis of initial determination. (i) The employer shall monitor employee exposures and shall base initial determinations on the employee exposure monitoring results and any of the following, relevant considerations:
(A) Any information, observations, or calculations which would indicate employee exposure to lead;
(B) Any previous measurements of airborne lead; and
(C) Any employee complaints of symptoms which may be attributable to exposure to lead.
(ii) Monitoring for the initial determination may be limited to a representative sample of the exposed employees who the employer reasonably believes are exposed to the greatest airborne concentrations of lead in the workplace.
(iii) Measurements of airborne lead made in the preceding 12 months may be used to satisfy the requirement to monitor under paragraph (d)(3)(i) if the sampling and analytical methods used meet the accuracy and confidence levels of paragraph (d)(9) of this section.
(4) Positive initial determination and initial monitoring. (i) Where a determination conducted under paragraphs (d) (2) and (3) of this section shows the possibility of any employee exposure at or above the action level, the employer shall conduct monitoring which is representative of the exposure for each employee in the workplace who is exposed to lead.
(ii) Measurements of airborne lead made in the preceding 12 months may be used to satisfy this requirement if the sampling and analytical methods used meet the accuracy and confidence levels of paragraph (d)(9) of this section.
(5) Negative initial determination. Where a determination, conducted under paragraphs (d) (2) and (3) of this section is made that no employee is exposed to airborne concentrations of lead at or above the action level, the employer shall make a written record of such determination. The record shall include at least the information specified in paragraph (d)(3) of this section and shall also include the date of determination, location within the worksite, and the name number of each employee monitored.
(6) Frequency. (i) If the initial monitoring reveals employee exposure to be below the action level the measurements need not be repeated except as otherwise provided in paragraph (d)(7) of this section.
(ii) If the initial determination or subsequent monitoring reveals employee exposure to be at or above the action level but below the permissible exposure limit the employer shall repeat monitoring in accordance with this paragraph at least every 6 months. The employer shall continue monitoring at the required frequency until at least two consecutive measurements, taken at least 7 days apart, are below the action level at which time the employer may discontinue monitoring for that employee except as otherwise provided in paragraph (d)(7) of this section.
(iii) If the initial monitoring reveals that employee exposure is above the permissible exposure limit the employer shall repeat monitoring quarterly. The employer shall continue monitoring at the required frequency until at least two consecutive measurements, taken at least 7 days apart, are below the PEL but at or above the action level at which time the employer shall repeat monitoring for that employee at the frequency specified in paragraph (d)(6)(ii), except as otherwise provided in paragraph (d)(7) of this section.
(7) Additional monitoring. Whenever there has been a production, process, control or personnel change which may result in new or additional exposure to lead, or whenever the employer has any other reason to suspect a change which may result in new or additional exposures to lead, additional monitoring in accordance with this paragraph shall be conducted.
(8) Employee notification. (i) The employer must, within 15 working days after the receipt of the results of any monitoring performed under this section, notify each affected employee of these results either individually in writing or by posting the results in an appropriate location that is accessible to affected employees.
(ii) Whenever the results indicate that the representative employee exposure, without regard to respirators, exceeds the permissible exposure limit, the employer shall incude in the written notice a statement that the permissible exposure limit was exceeded and a description of the corrective action taken or to be taken to reduce exposure to or below the permissible exposure limit.
(9) Accuracy of measurement. The employer shall use a method of monitoring and analysis which has an accuracy (to a confidence level of 95%) of not less than plus or minus 20 percent for airborne concentrations of lead equal to or greater than 30 µg/m
(e) Methods of compliance—(1) Engineering and work practice controls. (i) Where any employee is exposed to lead above the permissible exposure limit for more than 30 days per year, the employer shall implement engineering and work practice controls (including administrative controls) to reduce and maintain employee exposure to lead in accordance with the implementation schedule in Table I below, except to the extent that the employer can demonstrate that such controls are not feasible. Wherever the engineering and work practice controls which can be instituted are not sufficient to reduce employee exposure to or below the permissible exposure limit, the employer shall nonetheless use them to reduce exposures to the lowest feasible level and shall supplement them by the use of respiratory protection which complies with the requirements of paragraph (f) of this section.
(ii) Where any employee is exposed to lead above the permissible exposure limit, but for 30 days or less per year, the employer shall implement engineering controls to reduce exposures to 200 µg/m
Table I
Industry | Compliance dates:
1
(50 µg/m 3) |
---|---|
Lead chemicals, secondary copper smelting | July 19, 1996. |
Nonferrous foundries | July 19, 1996. 2 |
Brass and bronze ingot manufacture | 6 years. 3 |
1 Calculated by counting from the date the stay on implementation of paragraph (e)(1) was lifted by the U.S. Court of Appeals for the District of Columbia, the number of years specified in the 1978 lead standard and subsequent amendments for compliance with the PEL of 50 µg/m 3 for exposure to airborne concentrations of lead levels for the particular industry.
2 Large nonferrous foundries (20 or more employees) are required to achieve the PEL of 50 µg/m 3 by means of engineering and work practice controls. Small nonferrous foundries (fewer than 20 employees) are required to achieve an 8-hour TWA of 75 µg/m 3 by such controls.
3 Expressed as the number of years from the date on which the Court lifts the stay on the implementation of paragraph (e)(1) for this industry for employers to achieve a lead in air concentration of 75 µg/m 3. Compliance with paragraph (e) in this industry is determined by a compliance directive that incorporates elements from the settlement agreement between OSHA and representatives of the industry.
(2) Respiratory protection. Where engineering and work practice controls do not reduce employee exposure to or below the 50 µg/m
(3) Compliance program. (i) Each employer shall establish and implement a written compliance program to reduce exposures to or below the permissible exposure limit, and interim levels if applicable, solely by means of engineering and work practice controls in accordance with the implementation schedule in paragraph (e)(1).
(ii) Written plans for these compliance programs shall include at least the following:
(A) A description of each operation in which lead is emitted; e.g. machinery used, material processed, controls in place, crew size, employee job responsibilities, operating procedures and maintenance practices;
(B) A description of the specific means that will be employed to achieve compliance, including engineering plans and studies used to determine methods selected for controlling exposure to lead;
(C) A report of the technology considered in meeting the permissible exposure limit;
(D) Air monitoring data which documents the source of lead emissions;
(E) A detailed schedule for implementation of the program, including documentation such as copies of purchase orders for equipment, construction contracts, etc.;
(F) A work practice program which includes items required under paragraphs (g), (h) and (i) of this regulation;
(G) An administrative control schedule required by paragraph (e)(5) of this section, if applicable;
(H) Other relevant information.
(iii) Written programs shall be submitted upon request to the Assistant Secretary and the Director, and shall be available at the worksite for examination and copying by the Assistant Secretary, Director, any affected employee or authorized employee representatives.
(iv) Written programs must be revised and updated at least annually to reflect the current status of the program.
(4) Mechanical ventilation. (i) When ventilation is used to control exposure, measurements which demonstrate the effectiveness of the system in controlling exposure, such as capture velocity, duct velocity, or static pressure shall be made at least every 3 months. Measurements of the system's effectiveness in controlling exposure shall be made within 5 days of any change in production, process, or control which might result in a change in employee exposure to lead.
(ii) Recirculation of air. If air from exhaust ventilation is recirculated into the workplace, the employer shall assure that (A) the system has a high efficiency filter with reliable back-up filter; and (B) controls to monitor the concentration of lead in the return air and to bypass the recirculation system automatically if it fails are installed, operating, and maintained.
(5) Administrative controls. If administrative controls are used as a means of reducing employees TWA exposure to lead, the employer shall establish and implement a job rotation schedule which includes:
(i) Name or identification number of each affected employee;
(ii) Duration and exposure levels at each job or work station where each affected employee is located; and
(iii) Any other information which may be useful in assessing the reliability of administrative controls to reduce exposure to lead.
(f) Respiratory protection—(1) General. For employees who use respirators required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph. Respirators must be used during:
(i) Periods necessary to install or implement engineering or work-practice controls.
(ii) Work operations for which engineering and work-practice controls are not sufficient to reduce employee exposures to or below the permissible exposure limit.
(iii) Periods when an employee requests a respirator.
(2) Respirator program. (i) The employer must implement a respiratory protection program in accordance with § 1910.134(b) through (d) (except (d)(1)(iii)), and (f) through (m), which covers each employee required by this section to use a respirator.
(ii) If an employee has breathing difficulty during fit testing or respirator use, the employer must provide the employee with a medical examination in accordance with paragraph (j)(3)(i)(C) of this section to determine whether or not the employee can use a respirator while performing the required duty.
(3) Respirator selection. (i) Employers must:
(A) Select, and provide to employees, the appropriate respirators specified in paragraph (d)(3)(i)(A) of 29 CFR 1910.134.
(B) Provide employees with full facepiece respirators instead of half mask respirators for protection against lead aerosols that cause eye or skin irritation at the use concentrations.
(C) Provide HEPA filters for powered and non-powered air-purifying respirators.
(ii) Employers must provide employees with a powered air-purifying respirator (PAPR) instead of a negative pressure respirator selected according to paragraph (f)(3)(i) of this standard when an employee chooses to use a PAPR and it provides adequate protection to the employee as specified by paragraph (f)(3)(i) of this standard.
(g) Protective work clothing and equipment—(1) Provision and use. If an employee is exposed to lead above the PEL, without regard to the use of respirators or where the possibility of skin or eye irritation exists, the employer shall provide at no cost to the employee and assure that the employee uses appropriate protective work clothing and equipment such as, but not limited to:
(i) Coveralls or similar full-body work clothing;
(ii) Gloves, hats, and shoes or disposable shoe coverlets; and
(iii) Face shields, vented goggles, or other appropriate protective equipment which complies with § 1910.133 of this Part.
(2) Cleaning and replacement. (i) The employer shall provide the protective clothing required in paragraph (g)(1) of this section in a clean and dry condition at least weekly, and daily to employees whose exposure levels without regard to a respirator are over 200 µg/m
(ii) The employer shall provide for the cleaning, laundering, or disposal of protective clothing and equipment required by paragraph (g)(1) of this section.
(iii) The employer shall repair or replace required protective clothing and equipment as needed to maintain their effectiveness.
(iv) The employer shall assure that all protective clothing is removed at the completion of a work shift only in change rooms provided for that purpose as prescribed in paragraph (i)(2) of this section.
(v) The employer shall assure that contaminated protective clothing which is to be cleaned, laundered, or disposed of, is placed in a closed container in the change-room which prevents dispersion of lead outside the container.
(vi) The employer shall inform in writing any person who cleans or launders protective clothing or equipment of the potentially harmful effects of exposure to lead.
(vii) Labeling of contaminated protective clothing and equipment.
(A) The employer shall ensure that labels of bags or containers of contaminated protective clothing and equipment include the following information:
(B) Prior to June 1, 2015, employers may include the following information on bags or containers of contaminated protective clothing and equipment in lieu of the labeling requirements in paragraphs (g)(2)(vii)(A) of this section:
(viii) The employer shall prohibit the removal of lead from protective clothing or equipment by blowing, shaking, or any other means which disperses lead into the air.
(h) Housekeeping—(1) Surfaces. All surfaces shall be maintained as free as practicable of accumulations of lead.
(2) Cleaning floors. (i) Floors and other surfaces where lead accumulates may not be cleaned by the use of compressed air.
(ii) Shoveling, dry or wet sweeping, and brushing may be used only where vacuuming or other equally effective methods have been tried and found not to be effective.
(3) Vacuuming. Where vacuuming methods are selected, the vacuums shall be used and emptied in a manner which minimizes the reentry of lead into the workplace.
(i) Hygiene facilities and practices. (1) The employer shall assure that in areas where employees are exposed to lead above the PEL, without regard to the use of respirators, food or beverage is not present or consumed, tobacco products are not present or used, and cosmetics are not applied, except in change rooms, lunchrooms, and showers required under paragraphs (i)(2) through (i)(4) of this section.
(2) Change rooms. (i) The employer shall provide clean change rooms for employees who work in areas where their airborne exposure to lead is above the PEL, without regard to the use of respirators.
(ii) The employer shall assure that change rooms are equipped with separate storage facilities for protective work clothing and equipment and for street clothes which prevent cross-contamination.
(3) Showers. (i) The employer shall assure that employees who work in areas where their airborne exposure to lead is above the PEL, without regard to the use of respirators, shower at the end of the work shift.
(ii) The employer shall provide shower facilities in accordance with § 1910.141 (d)(3) of this part.
(iii) The employer shall assure that employees who are required to shower pursuant to paragraph (i)(3)(i) do not leave the workplace wearing any clothing or equipment worn during the work shift.
(4) Lunchrooms. (i) The employer shall provide lunchroom facilities for employees who work in areas where their airborne exposure to lead is above the PEL, without regard to the use of respirators.
(ii) The employer shall assure that lunchroom facilities have a temperature controlled, positive pressure, filtered air supply, and are readily accessible to employees.
(iii) The employer shall assure that employees who work in areas where their airborne exposure to lead is above the PEL without regard to the use of a respirator wash their hands and face prior to eating, drinking, smoking or applying cosmetics.
(iv) The employer shall assure that employees do not enter lunchroom facilities with protective work clothing or equipment unless surface lead dust has been removed by vacuuming, downdraft booth, or other cleaning method.
(5) Lavatories. The employer shall provide an adequate number of lavatory facilities which comply with § 1910.141(d) (1) and (2) of this part.
(j) Medical surveillance—(1) General. (i) The employer shall institute a medical surveillance program for all employees who are or may be exposed at or above the action level for more than 30 days per year.
(ii) The employer shall assure that all medical examinations and procedures are performed by or under the supervision of a licensed physician.
(iii) The employer shall provide the required medical surveillance including multiple physician review under paragraph (j)(3)(iii) without cost to employees and at a reasonable time and place.
(2) Biological monitoring—(i) Blood lead and ZPP level sampling and analysis. The employer shall make available biological monitoring in the form of blood sampling and analysis for lead and zinc protoporphyrin levels to each employee covered under paragraph (j)(1)(i) of this section on the following schedule:
(A) At least every 6 months to each employee covered under paragraph (j)(1)(i) of this section;
(B) At least every two months for each employee whose last blood sampling and analysis indicated a blood lead level at or above 40 µg/100 g of whole blood. This frequency shall continue until two consecutive blood samples and analyses indicate a blood lead level below 40 µg/100 g of whole blood; and
(C) At least monthly during the removal period of each employee removed from exposure to lead due to an elevated blood lead level.
(ii) Follow-up blood sampling tests. Whenever the results of a blood lead level test indicate that an employee's blood lead level is at or above the numerical criterion for medical removal under paragraph (k)(1)(i)(A) of this section, the employer shall provide a second (follow-up) blood sampling test within two weeks after the employer receives the results of the first blood sampling test.
(iii) Accuracy of blood lead level sampling and analysis. Blood lead level sampling and analysis provided pursuant to this section shall have an accuracy (to a confidence level of 95 percent) within plus or minus 15 percent or 6 µg/100ml, whichever is greater, and shall be conducted by a laboratory licensed by the Center for Disease Control, United States Department of Health, Education and Welfare (CDC) or which has received a satisfactory grade in blood lead proficiency testing from CDC in the prior twelve months.
(iv) Employee notification. Within five working days after the receipt of biological monitoring results, the employer shall notify in writing each employee whose blood lead level is at or above 40 µg/100 g:
(A) Of that employee's blood lead level; and
(B) That the standard requires temporary medical removal with Medical Removal Protection benefits when an employee's blood lead level is at or above the numerical criterion for medical removal under paragraph (k)(1)(i) of this section.
(3) Medical examinations and consultations—(i) Frequency. The employer shall make available medical examinations and consultations to each employee covered under paragraph (j)(1)(i) of this section on the following schedule:
(A) At least annually for each employee for whom a blood sampling test conducted at any time during the preceding 12 months indicated a blood lead level at or above 40 µg/100 g;
(B) Prior to assignment for each employee being assigned for the first time to an area in which airborne concentrations of lead are at or above the action level;
(C) As soon as possible, upon notification by an employee either that the employee has developed signs or symptoms commonly associated with lead intoxication, that the employee desires medical advice concerning the effects of current or past exposure to lead on the employee's ability to procreate a healthy child, or that the employee has demonstrated difficulty in breathing during a respirator fitting test or during use; and
(D) As medically appropriate for each employee either removed from exposure to lead due to a risk of sustaining material impairment to health, or otherwise limited pursuant to a final medical determination.
(ii) Content. Medical examinations made available pursuant to paragraph (j)(3)(i) (A) through (B) of this section shall include the following elements:
(A) A detailed work history and a medical history, with particular attention to past lead exposure (occupational and non-occupational), personal habits (smoking, hygiene), and past gastrointestinal, hematologic, renal, cardiovascular, reproductive and neurological problems;
(B) A thorough physical examination, with particular attention to teeth, gums, hematologic, gastrointestinal, renal, cardiovascular, and neurological systems. Pulmonary status should be evaluated if respiratory protection will be used;
(C) A blood pressure measurement;
(D) A blood sample and analysis which determines:
(1) Blood lead level;
(2) Hemoglobin and hematocrit determinations, red cell indices, and examination of peripheral smear morphology;
(3) Zinc protoporphyrin;
(4) Blood urea nitrogen; and,
(5) Serum creatinine;
(E) A routine urinalysis with microscopic examination; and
(F) Any laboratory or other test which the examining physician deems necessary by sound medical practice.
(iii) Multiple physician review mechanism. (A) If the employer selects the initial physician who conducts any medical examination or consultation provided to an employee under this section, the employee may designate a second physician:
(1) To review any findings, determinations or recommendations of the initial physician; and
(2) To conduct such examinations, consultations, and laboratory tests as the second physician deems necessary to facilitate this review.
(B) The employer shall promptly notify an employee of the right to seek a second medical opinion after each occasion that an initial physician conducts a medical examination or consultation pursuant to this section. The employer may condition its participation in, and payment for, the multiple physician review mechanism upon the employee doing the following within fifteen (15) days after receipt of the foregoing notification, or receipt of the initial physician's written opinion, whichever is later:
(1) The employee informing the employer that he or she intends to seek a second medical opinion, and
(2) The employee initiating steps to make an appointment with a second physician.
(C) If the findings, determinations or recommendations of the second physician differ from those of the initial physician, then the employer and the employee shall assure that efforts are made for the two physicians to resolve any disagreement.
(D) If the two physicians have been unable to quickly resolve their disagreement, then the employer and the employee through their respective physicians shall designate a third physician:
(1) To review any findings, determinations or recommendations of the prior physicians; and
(2) To conduct such examinations, consultations, laboratory tests and discussions with the prior physicians as the third physician deems necessary to resolve the disagreement of the prior physicians.
(E) The employer shall act consistent with the findings, determinations and recommendations of the third physician, unless the employer and the employee reach an agreement which is otherwise consistent with the recommendations of at least one of the three physicians.
(iv) Information provided to examining and consulting physicians. (A) The employer shall provide an initial physician conducting a medical examination or consultation under this section with the following information:
(1) A copy of this regulation for lead including all Appendices;
(2) A description of the affected employee's duties as they relate to the employee's exposure;
(3) The employee's exposure level or anticipated exposure level to lead and to any other toxic substance (if applicable);
(4) A description of any personal protective equipment used or to be used;
(5) Prior blood lead determinations; and
(6) All prior written medical opinions concerning the employee in the employer's possession or control.
(B) The employer shall provide the foregoing information to a second or third physician conducting a medical examination or consultation under this section upon request either by the second or third physician, or by the employee.
(v) Written medical opinions. (A) The employer shall obtain and furnish the employee with a copy of a written medical opinion from each examining or consulting physician which contains the following information:
(1) The physician's opinion as to whether the employee has any detected medical condition which would place the employee at increased risk of material impairment of the employee's health from exposure to lead;
(2) Any recommended special protective measures to be provided to the employee, or limitations to be placed upon the employee's exposure to lead;
(3) Any recommended limitation upon the employee's use of respirators, including a determination of whether the employee can wear a powered air purifying respirator if a physician determines that the employee cannot wear a negative pressure respirator; and
(4) The results of the blood lead determinations.
(B) The employer shall instruct each examining and consulting physician to:
(1) Not reveal either in the written opinion, or in any other means of communication with the employer, findings, including laboratory results, or diagnoses unrelated to an employee's occupational exposure to lead; and
(2) Advise the employee of any medical condition, occupational or nonoccupational, which dictates further medical examination or treatment.
(vi) Alternate Physician Determination Mechanisms. The employer and an employee or authorized employee representative may agree upon the use of any expeditious alternate physician determination mechanism in lieu of the multiple physician review mechanism provided by this paragraph so long as the alternate mechanism otherwise satisfies the requirements contained in this paragraph.
(4) Chelation. (i) The employer shall assure that any person whom he retains, employs, supervises or controls does not engage in prophylactic chelation of any employee at any time.
(ii) If therapeutic or diagnostic chelation is to be performed by any person in paragraph (j)(4)(i), the employer shall assure that it be done under the supervision of a licensed physician in a clinical setting with thorough and appropriate medical monitoring and that the employee is notified in writing prior to its occurrence.
(k) Medical Removal Protection—(1) Temporary medical removal and return of an employee—(i) Temporary removal due to elevated blood lead levels. (A) The employer shall remove an employee from work having an exposure to lead at or above the action level on each occasion that a periodic and a follow-up blood sampling test conducted pursuant to this section indicate that the employee's blood lead level is at or above 60 µg/100 g of whole blood; and
(B) The employer shall remove an employee from work having an exposure to lead at or above the action level on each occasion that the average of the last three blood sampling tests conducted pursuant to this section (or the average of all blood sampling tests conducted over the previous six (6) months, whichever is longer) indicates that the employee's blood lead level is at or above 50 µg/100 g of whole blood; provided, however, that an employee need not be removed if the last blood sampling test indicates a blood lead level below 40 µg/100 g of whole blood.
(ii) Temporary removal due to a final medical determination. (A) The employer shall remove an employee from work having an exposure to lead at or above the action level on each occasion that a final medical determination results in a medical finding, determination, or opinion that the employee has a detected medical condition which places the employee at increased risk of material impairment to health from exposure to lead.
(B) For the purposes of this section, the phrase “final medical determination” shall mean the outcome of the multiple physician review mechanism or alternate medical determination mechanism used pursuant to the medical surveillance provisions of this section.
(C) Where a final medical determination results in any recommended special protective measures for an employee, or limitations on an employee's exposure to lead, the employer shall implement and act consistent with the recommendation.
(iii) Return of the employee to former job status. (A) The employer shall return an employee to his or her former job status:
(1) For an employee removed due to a blood lead level at or above 60 µg/100 g, or due to an average blood lead level at or above 50 µg/100 g, when two consecutive blood sampling tests indicate that the employee's blood lead level is below 40 µg/100 g of whole blood;
(2) For an employee removed due to a final medical determination, when a subsequent final medical determination results in a medical finding, determination, or opinion that the employee no longer has a detected medical condition which places the employee at increased risk of material impairment to health from exposure to lead.
(B) For the purposes of this section, the requirement that an employer return an employee to his or her former job status is not intended to expand upon or restrict any rights an employee has or would have had, absent temporary medical removal, to a specific job classification or position under the terms of a collective bargaining agreement.
(iv) Removal of other employee special protective measure or limitations. The employer shall remove any limitations placed on an employee or end any special protective measures provided to an employee pursuant to a final medical determination when a subsequent final medical determination indicates that the limitations or special protective measures are no longer necessary.
(v) Employer options pending a final medical determination. Where the multiple physician review mechanism, or alternate medical determination mechanism used pursuant to the medical surveillance provisions of this section, has not yet resulted in a final medical determination with respect to an employee, the employer shall act as follows:
(A) Removal. The employer may remove the employee from exposure to lead, provide special protective measures to the employee, or place limitations upon the employee, consistent with the medical findings, determinations, or recommendations of any of the physicians who have reviewed the employee's health status.
(B) Return. The employer may return the employee to his or her former job status, end any special protective measures provided to the employee, and remove any limitations placed upon the employee, consistent with the medical findings, determinations, or recommendations of any of the physicians who have reviewed the employee's health status, with two exceptions. If
(1) the initial removal, special protection, or limitation of the employee resulted from a final medical determination which differed from the findings, determinations, or recommendations of the initial physician or
(2) The employee has been on removal status for the preceding eighteen months due to an elevated blood lead level, then the employer shall await a final medical determination.
(2) Medical removal protection benefits—(i) Provision of medical removal protection benefits. The employer shall provide to an employee up to eighteen (18) months of medical removal protection benefits on each occasion that an employee is removed from exposure to lead or otherwise limited pursuant to this section.
(ii) Definition of medical removal protection benefits. For the purposes of this section, the requirement that an employer provide medical removal protection benefits means that the employer shall maintain the earnings, seniority and other employment rights and benefits of an employee as though the employee had not been removed from normal exposure to lead or otherwise limited.
(iii) Follow-up medical surveillance during the period of employee removal or limitation. During the period of time that an employee is removed from normal exposure to lead or otherwise limited, the employer may condition the provision of medical removal protection benefits upon the employee's participation in follow-up medical surveillance made available pursuant to this section.
(iv) Workers' compensation claims. If a removed employee files a claim for workers' compensation payments for a lead-related disability, then the employer shall continue to provide medical removal protection benefits pending disposition of the claim. To the extent that an award is made to the employee for earnings lost during the period of removal, the employer's medical removal protection obligation shall be reduced by such amount. The employer shall receive no credit for workers' compensation payments received by the employee for treatment related expenses.
(v) Other credits. The employer's obligation to provide medical removal protection benefits to a removed employee shall be reduced to the extent that the employee receives compensation for earnings lost during the period of removal either from a publicly or employer-funded compensation program, or receives income from employment with another employer made possible by virtue of the employee's removal.
(vi) Employees whose blood lead levels do not adequately decline within 18 months of removal. The employer shall take the following measures with respect to any employee removed from exposure to lead due to an elevated blood lead level whose blood lead level has not declined within the past eighteen (18) months of removal so that the employee has been returned to his or her former job status:
(A) The employer shall make available to the employee a medical examination pursuant to this section to obtain a final medical determination with respect to the employee;
(B) The employer shall assure that the final medical determination obtained indicates whether or not the employee may be returned to his or her former job status, and if not, what steps should be taken to protect the employee's health;
(C) Where the final medical determination has not yet been obtained, or once obtained indicates that the employee may not yet be returned to his or her former job status, the employer shall continue to provide medical removal protection benefits to the employee until either the employee is returned to former job status, or a final medical determination is made that the employee is incapable of ever safely returning to his or her former job status.
(D) Where the employer acts pursuant to a final medical determination which permits the return of the employee to his or her former job status despite what would otherwise be an unacceptable blood lead level, later questions concerning removing the employee again shall be decided by a final medical determination. The employer need not automatically remove such an employee pursuant to the blood lead level removal criteria provided by this section.
(vii) Voluntary Removal or Restriction of An Employee. Where an employer, although not required by this section to do so, removes an employee from exposure to lead or otherwise places limitations on an employee due to the effects of lead exposure on the employee's medical condition, the employer shall provide medical removal protection benefits to the employee equal to that required by paragraph (k)(2)(i) of this section.
(l) Employee information and training—(1) Training program. (i) Each employer who has a workplace in which there is a potential exposure to airborne lead at any level shall inform employees of the content of Appendices A and B of this regulation.
(ii) The employer shall train each employee who is subject to exposure to lead at or above the action level, or for whom the possibility of skin or eye irritation exists, in accordance with the requirements of this section. The employer shall institute a training program and ensure employee participation in the program.
(iii) The employer shall provide initial training by 180 days from the effective date for those employees covered by paragraph (l)(1) (ii) on the standard's effective date and prior to the time of initial job assignment for those employees subsequently covered by this paragraph.
(iv) The training program shall be repeated at least annually for each employee.
(v) The employer shall assure that each employee is informed of the following:
(A) The content of this standard and its appendices;
(B) The specific nature of the operations which could result in exposure to lead above the action level;
(C) The purpose, proper selection, fitting, use, and limitations of respirators;
(D) The purpose and a description of the medical surveillance program, and the medical removal protection program including information concerning the adverse health effects associated with excessive exposure to lead (with particular attention to the adverse reproductive effects on both males and females);
(E) The engineering controls and work practices associated with the employee's job assignment;
(F) The contents of any compliance plan in effect; and
(G) Instructions to employees that chelating agents should not routinely be used to remove lead from their bodies and should not be used at all except under the direction of a licensed physician;
(2) Access to information and training materials. (i) The employer shall make readily available to all affected employees a copy of this standard and its appendices.
(ii) The employer shall provide, upon request, all materials relating to the employee information and training program to the Assistant Secretary and the Director.
(iii) In addition to the information required by paragraph (l)(1)(v), the employer shall include as part of the training program, and shall distribute to employees, any materials pertaining to the Occupational Safety and Health Act, the regulations issued pursuant to that Act, and this lead standard, which are made available to the employer by the Assistant Secretary.
(m) Communication of hazards—(1) Hazard communication—general. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for lead.
(ii) In classifying the hazards of lead at least the following hazards are to be addressed: Reproductive/developmental toxicity; central nervous system effects; kidney effects; blood effects; and acute toxicity effects.
(iii) Employers shall include lead in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of lead and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (l) of this section.
(2) Signs. (i) The employer shall post the following warning signs in each work area where the PEL is exceeded:
(ii) The employer shall ensure that no statement appears on or near any sign required by this paragraph (m)(2) which contradicts or detracts from the meaning of the required sign.
(iii) The employer shall ensure that signs required by this paragraph (m)(2) are illuminated and cleaned as necessary so that the legend is readily visible.
(iv) The employer may use signs required by other statutes, regulations, or ordinances in addition to, or in combination with, signs required by this paragraph (m)(2).
(v) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (m)(2)(ii) of this section:
(n) Recordkeeping—(1) Exposure monitoring. (i) The employer shall establish and maintain an accurate record of all monitoring required in paragraph (d) of this section.
(ii) This record shall include:
(A) The date(s), number, duration, location and results of each of the samples taken, including a description of the sampling procedure used to determine representative employee exposure where applicable;
(B) A description of the sampling and analytical methods used and evidence of their accuracy;
(C) The type of respiratory protective devices worn, if any;
(D) Name and job classification of the employee monitored and of all other employees whose exposure the measurement is intended to represent; and
(E) The environmental variables that could affect the measurement of employee exposure.
(iii) The employer shall maintain these monitoring records for at least 40 years or for the duration of employment plus 20 years, whichever is longer.
(2) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance as required by paragraph (j) of this section.
(ii) This record shall include:
(A) The name and description of the duties of the employee;
(B) A copy of the physician's written opinions;
(C) Results of any airborne exposure monitoring done for that employee and the representative exposure levels supplied to the physician; and
(D) Any employee medical complaints related to exposure to lead.
(iii) The employer shall keep, or assure that the examining physician keeps, the following medical records:
(A) A copy of the medical examination results including medical and work history required under paragraph (j) of this section;
(B) A description of the laboratory procedures and a copy of any standards or guidelines used to interpret the test results or references to that information;
(C) A copy of the results of biological monitoring.
(iv) The employer shall maintain or assure that the physician maintains those medical records for at least 40 years, or for the duration of employment plus 20 years, whichever is longer.
(3) Medical removals. (i) The employer shall establish and maintain an accurate record for each employee removed from current exposure to lead pursuant to paragraph (k) of this section.
(ii) Each record shall include:
(A) The name of the employee;
(B) The date on each occasion that the employee was removed from current exposure to lead as well as the corresponding date on which the employee was returned to his or her former job status;
(C) A brief explanation of how each removal was or is being accomplished; and
(D) A statement with respect to each removal indicating whether or not the reason for the removal was an elevated blood lead level.
(iii) The employer shall maintain each medical removal record for at least the duration of an employee's employment.
(4) Availability. (i) The employer shall make available upon request all records required to be maintained by paragraph (n) of this section to the Assistant Secretary and the Director for examination and copying.
(ii) Environmental monitoring, medical removal, and medical records required by this paragraph shall be provided upon request to employees, designated representatives, and the Assistant Secretary in accordance with 29 CFR 1910.1020 (a)-(e) and (2)-(i). Medical removal records shall be provided in the same manner as environmental monitoring records.
(5) Transfer of records. (i) Whenever the employer ceases to do business, the successor employer shall receive and retain all records required to be maintained by paragraph (n) of this section.
(ii) The employer shall also comply with any additional requirements involving transfer of records set forth in 29 CFR 1910.1020(h).
(o) Observation of monitoring—(1) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to lead conducted pursuant to paragraph (d) of this section.
(2) Observation procedures. (i) Whenever observation of the monitoring of employee exposure to lead requires entry into an area where the use of respirators, protective clothing or equipment is required, the employer shall provide the observer with and assure the use of such respirators, clothing and such equipment, and shall require the observer to comply with all other applicable safety and health procedures.
(ii) Without interfering with the monitoring, observers shall be entitled to:
(A) Receive an explanation of the measurement procedures;
(B) Observe all steps related to the monitoring of lead performed at the place of exposure; and
(C) Record the results obtained or receive copies of the results when returned by the laboratory.
(p) Appendices. The information contained in the appendices to this section is not intended by itself, to create any additional obligations not otherwise imposed by this standard nor detract from any existing obligation.
A. Substance: Pure lead (Pb) is a heavy metal at room temperature and pressure and is a basic chemical element. It can combine with various other substances to form numerous lead compounds.
B. Compounds Covered by the Standard: The word “lead” when used in this standard means elemental lead, all inorganic lead compounds and a class of organic lead compounds called lead soaps. This standard does not apply to other organic lead compounds.
C. Uses: Exposure to lead occurs in at least 120 different occupations, including primary and secondary lead smelting, lead storage battery manufacturing, lead pigment manufacturing and use, solder manufacturing and use, shipbuilding and ship repairing, auto manufacturing, and printing.
D. Permissible Exposure: The Permissible Exposure Limit (PEL) set by the standard is 50 micrograms of lead per cubic meter of air (50 µg/m
E. Action Level: The standard establishes an action level of 30 micrograms per cubic meter of air (30 µg/m
A. Ways in which lead enters your body. When absorbed into your body in certain doses lead is a toxic substance. The object of the lead standard is to prevent absorption of harmful quantities of lead. The standard is intended to protect you not only from the immediate toxic effects of lead, but also from the serious toxic effects that may not become apparent until years of exposure have passed.
Lead can be absorbed into your body by inhalation (breathing) and ingestion (eating). Lead (except for certain organic lead compounds not covered by the standard, such as tetraethyl lead) is not absorbed through your skin. When lead is scattered in the air as a dust, fume or mist it can be inhaled and absorbed through you lungs and upper respiratory tract. Inhalation of airborne lead is generally the most important source of occupational lead absorption. You can also absorb lead through your digestive system if lead gets into your mouth and is swallowed. If you handle food, cigarettes, chewing tobacco, or make-up which have lead on them or handle them with hands contaminated with lead, this will contribute to ingestion.
A significant portion of the lead that you inhale or ingest gets into your blood stream. Once in your blood stream, lead is circulated throughout your body and stored in various organs and body tissues. Some of this lead is quickly filtered out of your body and excreted, but some remains in the blood and other tissues. As exposure to lead continues, the amount stored in your body will increase if you are absorbing more lead than your body is excreting. Even though you may not be aware of any immediate symptoms of disease, this lead stored in your tissues can be slowly causing irreversible damage, first to individual cells, then to your organs and whole body systems.
B. Effects of overexposure to lead—(1) Short term (acute) overexposure. Lead is a potent, systemic poison that serves no known useful function once absorbed by your body. Taken in large enough doses, lead can kill you in a matter of days. A condition affecting the brain called acute encephalopathy may arise which develops quickly to seizures, coma, and death from cardiorespiratory arrest. A short term dose of lead can lead to acute encephalopathy. Short term occupational exposures of this magnitude are highly unusual, but not impossible. Similar forms of encephalopathy may, however, arise from extended, chronic exposure to lower doses of lead. There is no sharp dividing line between rapidly developing acute effects of lead, and chronic effects which take longer to acquire. Lead adversely affects numerous body systems, and causes forms of health impairment and disease which arise after periods of exposure as short as days or as long as several years.
(2) Long-term (chronic) overexposure. Chronic overexposure to lead may result in severe damage to your blood-forming, nervous, urinary and reproductive systems. Some common symptoms of chronic overexposure include loss of appetite, metallic taste in the mouth, anxiety, constipation, nausea, pallor, excessive tiredness, weakness, insomnia, headache, nervous irritability, muscle and joint pain or soreness, fine tremors, numbness, dizziness, hyperactivity and colic. In lead colic there may be severe abdominal pain.
Damage to the central nervous system in general and the brain (encephalopathy) in particular is one of the most severe forms of lead poisoning. The most severe, often fatal, form of encephalopathy may be preceded by vomiting, a feeling of dullness progressing to drowsiness and stupor, poor memory, restlessness, irritability, tremor, and convulsions. It may arise suddenly with the onset of seizures, followed by coma, and death. There is a tendency for muscular weakness to develop at the same time. This weakness may progress to paralysis often observed as a characteristic “wrist drop” or “foot drop” and is a manifestation of a disease to the nervous system called peripheral neuropathy.
Chronic overexposure to lead also results in kidney disease with few, if any, symptoms appearing until extensive and most likely permanent kidney damage has occurred. Routine laboratory tests reveal the presence of this kidney disease only after about two-thirds of kidney function is lost. When overt symptoms of urinary dysfunction arise, it is often too late to correct or prevent worsening conditions, and progression to kidney dialysis or death is possible.
Chronic overexposure to lead impairs the reproductive systems of both men and women. Overexposure to lead may result in decreased sex drive, impotence and sterility in men. Lead can alter the structure of sperm cells raising the risk of birth defects. There is evidence of miscarriage and stillbirth in women whose husbands were exposed to lead or who were exposed to lead themselves. Lead exposure also may result in decreased fertility, and abnormal menstrual cycles in women. The course of pregnancy may be adversely affected by exposure to lead since lead crosses the placental barrier and poses risks to developing fetuses. Children born of parents either one of whom were exposed to excess lead levels are more likely to have birth defects, mental retardation, behavioral disorders or die during the first year of childhood.
Overexposure to lead also disrupts the blood-forming system resulting in decreased hemoglobin (the substance in the blood that carries oxygen to the cells) and ultimately anemia. Anemia is characterized by weakness, pallor and fatigability as a result of decreased oxygen carrying capacity in the blood.
(3) Health protection goals of the standard. Prevention of adverse health effects for most workers from exposure to lead throughout a working lifetime requires that worker blood lead (PbB) levels be maintained at or below forty micrograms per one hundred grams of whole blood (40 µg/100g). The blood lead levels of workers (both male and female workers) who intend to have children should be maintained below 30 µg/100g to minimize adverse reproductive health effects to the parents and to the developing fetus.
The measurement of your blood lead level is the most useful indicator of the amount of lead being absorbed by your body. Blood lead levels (PbB) are most often reported in units of milligrams (mg) or micrograms (µg) of lead (1 mg = 1000 µg) per 100 grams (100g), 100 milliters (100 ml) or deciliter (dl) of blood. These three units are essentially the same. Sometime PbB's are expressed in the form of mg% or µg%. This is a shorthand notation for 100g, 100 ml, or dl.
PbB measurements show the amount of lead circulating in your blood stream, but do not give any information about the amount of lead stored in your various tissues. PbB measurements merely show current absorption of lead, not the effect that lead is having on your body or the effects that past lead exposure may have already caused. Past research into lead-related diseases, however, has focused heavily on associations between PbBs and various diseases. As a result, your PbB is an important indicator of the likelihood that you will gradually acquire a lead-related health impairment or disease.
Once your blood lead level climbs above 40 µg/100g, your risk of disease increases. There is a wide variability of individual response to lead, thus it is difficult to say that a particular PbB in a given person will cause a particular effect. Studies have associated fatal encephalopathy with PbBs as low as 150 µg/100g. Other studies have shown other forms of diseases in some workers with PbBs well below 80 µg/100g. Your PbB is a crucial indicator of the risks to your health, but one other factor is also extremely important. This factor is the length of time you have had elevated PbBs. The longer you have an elevated PbB, the greater the risk that large quantities of lead are being gradually stored in your organs and tissues (body burden). The greater your overall body burden, the greater the chances of substantial permanent damage.
The best way to prevent all forms of lead-related impairments and diseases—both short term and long term- is to maintain your PbB below 40 µg/100g. The provisions of the standard are designed with this end in mind. Your employer has prime responsibility to assure that the provisions of the standard are complied with both by the company and by individual workers. You as a worker, however, also have a responsibility to assist your employer in complying with the standard. You can play a key role in protecting your own health by learning about the lead hazards and their control, learning what the standard requires, following the standard where it governs your own actions, and seeing that your employer complies with provisions governing his actions.
(4) Reporting signs and symptoms of health problems. You should immediately notify your employer if you develop signs or symptoms associated with lead poisoning or if you desire medical advice concerning the effects of current or past exposure to lead on your ability to have a healthy child. You should also notify your employer if you have difficulty breathing during a respirator fit test or while wearing a respirator. In each of these cases your employer must make available to you appropriate medical examinations or consultations. These must be provided at no cost to you and at a reasonable time and place.
The standard contains a procedure whereby you can obtain a second opinion by a physician of your choice if the employer selected the initial physician.
This appendix summarizes key provisions of the standard that you as a worker should become familiar with.
The standards sets a permissible exposure limit (PEL) of fifty micrograms of lead per cubic meter of air (50 µg/m
This standard recognizes that your daily exposure to lead can extend beyond a typical 8-hour workday as the result of overtime or other alterations in your work schedule. To deal with this, the standard contains a formula which reduces your permissible exposure when you are exposed more than 8 hours. For example, if you are exposed to lead for 10 hours a day, the maximum permitted average exposure would be 40 µg/m
If lead is present in the workplace where you work in any quantity, your employer is required to make an initial determination of whether the action level is exceeded for any employee. This initial determination must include instrument monitoring of the air for the presence of lead and must cover the exposure of a representative number of employees who are reasonably believed to have the highest exposure levels. If your employer has conducted appropriate air sampling for lead in the past year he may use these results. If there have been any employee complaints of symptoms which may be attributable to exposure to lead or if there is any other information or observations which would indicate employee exposure to lead, this must also be considered as part of the initial determination. This initial determination must have been completed by March 31, 1979. If this initial determination shows that a reasonable possibility exists that any employee may be exposed, without regard to respirators, over the action level (30 µg/m
In carrying out this air monitoring program, your employer is not required to monitor the exposure of every employee, but he must monitor a representative number of employees and job types. Enough sampling must be done to enable each employee's exposure level to be reasonably least one full shift (at least 7 hours) air sample. In addition, these air samples must be taken under conditions which represent each employee's regular, daily exposure to lead. All initial exposure monitoring must have been completed by May 30, 1979.
If you are exposed to lead and air sampling is performed, your employer is required to quickly notify you in writing of air monitoring results which represent your exposure. If the results indicate your exposure exceeds the PEL (without regard to your use of respirators), then your employer must also notify you of this in writing, and provide you with a description of the corrective action that will be taken to reduce your exposure.
Your exposure must be rechecked by monitoring every six months if your exposure is over the action level but below the PEL. Air monitoring must be repeated every 3 months if you are exposed over the PEL. Your employer may discontinue monitoring for you if 2 consecutive measurements, taken at least two weeks apart, are below the action level. However, whenever there is a production, process, control, or personnel change at your workplace which may result in new or additional exposure to lead, or whenever there is any other reason to suspect a change which may result in new or additional exposure to lead, your employer must perform additional monitoring.
Your employer is required to assure that no employee is exposed to lead in excess of the PEL. The standard establishes a priority of methods to be used to meet the PEL.
Your employer is required to provide and assure your use of respirators when your exposure to lead is not controlled below the PEL by other means. The employer must pay the cost of the respirator. Whenever you request one, your employer is also required to provide you a respirator even if your air exposure level does not exceed the PEL. You might desire a respirator when, for example, you have received medical advice that your lead absorption should be decreased. Or, you may intend to have children in the near future, and want to reduce the level of lead in your body to minimize adverse reproductive effects. While respirators are the least satisfactory means of controlling your exposure, they are capable of providing significant protection if properly chosen, fitted, worn, cleaned, maintained, and replaced when they stop providing adequate protection.
Your employer is required to select respirators from the seven types listed in Table II of the Respiratory Protection section of the standard (§ 1910.1025(f)). Any respirator chosen must be approved by the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 42 CFR part 84. This respirator selection table will enable your employer to choose a type of respirator that will give you a proper amount of protection based on your airborne lead exposure. Your employer may select a type of respirator that provides greater protection than that required by the standard; that is, one recommended for a higher concentration of lead than is present in your workplace. For example, a powered air-purifying respirator (PAPR) is much more protective than a typical negative pressure respirator, and may also be more comfortable to wear. A PAPR has a filter, cartridge, or canister to clean the air, and a power source that continuously blows filtered air into your breathing zone. Your employer might make a PAPR available to you to ease the burden of having to wear a respirator for long periods of time. The standard provides that you can obtain a PAPR upon request.
Your employer must also start a Respiratory Protection Program. This program must include written procedures for the proper selection, use, cleaning, storage, and maintenance of respirators.
Your employer must ensure that your respirator facepiece fits properly. Proper fit of a respirator facepiece is critical to your protection from airborne lead. Obtaining a proper fit on each employee may require your employer to make available several different types of respirator masks. To ensure that your respirator fits properly and that facepiece leakage is minimal, your employer must give you either a qualitative or quantitative fit test as specified in appendix A of the Respiratory Protection standard located at 29 CFR 1910.134.
You must also receive from your employer proper training in the use of respirators. Your employer is required to teach you how to wear a respirator, to know why it is needed, and to understand its limitations.
The standard provides that if your respirator uses filter elements, you must be given an opportunity to change the filter elements whenever an increase in breathing resistance is detected. You also must be permitted to periodically leave your work area to wash your face and respirator facepiece whenever necessary to prevent skin irritation. If you ever have difficulty in breathing during a fit test or while using a respirator, your employer must make a medical examination available to you to determine whether you can safely wear a respirator. The result of this examination may be to give you a positive pressure respirator (which reduces breathing resistance) or to provide alternative means of protection.
If you are exposed to lead above the PEL, or if you are exposed to lead compounds such as lead arsenate or lead azide which can cause skin and eye irritation, your employer must provide you with protective work clothing and equipment appropriate for the hazard. If work clothing is provided, it must be provided in a clean and dry condition at least weekly, and daily if your airborne exposure to lead is greater than 200 µg/m
Your employer must establish a housekeeping program sufficient to maintain all surfaces as free as practicable of accumulations of lead dust. Vacuuming is the preferred method of meeting this requirement, and the use of compressed air to clean floors and other surfaces is absolutely prohibited. Dry or wet sweeping, shoveling, or brushing may not be used except where vaccuming or other equally effective methods have been tried and do not work. Vacuums must be used and emptied in a manner which minimizes the reentry of lead into the workplace.
The standard requires that change rooms, showers, and filtered air lunchrooms be constructed and made available to workers exposed to lead above the PEL. When the PEL is exceeded the employer must assure that food and beverage is not present or consumed, tobacco products are not present or used, and cosmetics are not applied, except in these facilities. Change rooms, showers, and lunchrooms, must be used by workers exposed in excess of the PEL. After showering, no clothing or equipment worn during the shift may be worn home, and this includes shoes and underwear. Your own clothing worn during the shift should be carried home and cleaned carefully so that it does not contaminate your home. Lunchrooms may not be entered with protective clothing or equipment unless surface dust has been removed by vacuuming, downdraft booth, or other cleaning method. Finally, workers exposed above the PEL must wash both their hands and faces prior to eating, drinking, smoking or applying cosmetics.
All of the facilities and hygiene practices just discussed are essential to minimize additional sources of lead absorption from inhalation or ingestion of lead that may accumulate on you, your clothes, or your possessions. Strict compliance with these provisions can virtually eliminate several sources of lead exposure which significantly contribute to excessive lead absorption.
The medical surveillance program is part of the standard's comprehensive approach to the prevention of lead-related disease. Its purpose is to supplement the main thrust of the standard which is aimed at minimizing airborne concentrations of lead and sources of ingestion. Only medical surveillance can determine if the other provisions of the standard have affectively protected you as an individual. Compliance with the standard's provision will protect most workers from the adverse effects of lead exposure, but may not be satisfactory to protect individual workers (1) who have high body burdens of lead acquired over past years, (2) who have additional uncontrolled sources of non-occupational lead exposure, (3) who exhibit unusual variations in lead absorption rates, or (4) who have specific non-work related medical conditions which could be aggravated by lead exposure (e.g., renal disease, anemia). In addition, control systems may fail, or hygiene and respirator programs may be inadequate. Periodic medical surveillance of individual workers will help detect those failures. Medical surveillance will also be important to protect your reproductive ability—regardless of whether you are a man or woman.
All medical surveillance required by the standard must be performed by or under the supervision of a licensed physician. The employer must provide required medical surveillance without cost to employees and at a reasonable time and place. The standard's medical surveillance program has two parts-periodic biological monitoring and medical examinations.
Your employer's obligation to offer you medical surveillance is triggered by the results of the air monitoring program. Medical surveillance must be made available to all employees who are exposed in excess of the action level for more than 30 days a year. The initial phase of the medical surveillance program, which includes blood lead level tests and medical examinations, must be completed for all covered employees no later than August 28, 1979. Priority within this first round of medical surveillance must be given to employees whom the employer believes to be at greatest risk from continued exposure (for example, those with the longest prior exposure to lead, or those with the highest current exposure). Thereafter, the employer must periodically make medical surveillance—both biological monitoring and medical examinations—available to all covered employees.
Biological monitoring under the standard consists of blood lead level (PbB) and zinc protoporphyrin tests at least every 6 months after the initial PbB test. A zinc protoporphyrin (ZPP) test is a very useful blood test which measures an effect of lead on your body. Thus biological monitoring under the standard is currently limited to PbB testing. If a worker's PbB exceeds 40 µg/100g the monitoring frequency must be increased from every 6 months to at least every 2 months and not reduced until two consecutive PbBs indicate a blood lead level below 40 µg/100g. Each time your PbB is determined to be over 40 µg/100g, your employer must notify you of this in writing within five working days of his receipt of the test results. The employer must also inform you that the standard requires temporary medical removal with economic protection when your PbB exceeds certain criteria. (See Discussion of Medical Removal Protection—Paragraph (k).) During the first year of the standard, this removal criterion is 80 µg/100g. Anytime your PbB exceeds 80 µg/100g your employer must make available to you a prompt follow-up PbB test to ascertain your PbB. If the two tests both exceed 80 µg/100g and you are temporarily removed, then your employer must make successive PbB tests available to you on a monthly basis during the period of your removal.
Medical examinations beyond the initial one must be made available on an annual basis if your blood lead level exceeds 40 µg/100g at any time during the preceding year. The initial examination will provide information to establish a baseline to which subsequent data can be compared. An initial medical examination must also be made available (prior to assignment) for each employee being assigned for the first time to an area where the airborne concentration of lead equals or exceeds the action level. In addition, a medical examination or consultation must be made available as soon as possible if you notify your employer that you are experiencing signs or symptoms commonly associated with lead poisoning or that you have difficulty breathing while wearing a respirator or during a respirator fit test. You must also be provided a medical examination or consultation if you notify your employer that you desire medical advice concerning the effects of current or past exposure to lead on your ability to procreate a healthy child.
Finally, appropriate follow-up medical examinations or consultations may also be provided for employees who have been temporarily removed from exposure under the medical removal protection provisions of the standard. (See part IX, below.)
The standard specifies the minimum content of pre-assignment and annual medical examinations. The content of other types of medical examinations and consultations is left up to the sound discretion of the examining physician. Pre-assignment and annual medical examinations must include (1) a detailed work history and medical history, (2) a thorough physical examination, and (3) a series of laboratory tests designed to check your blood chemistry and your kidney function. In addition, at any time upon your request, a laboratory evaluation of male fertility will be made (microscopic examination of a sperm sample), or a pregnancy test will be given.
The standard does not require that you participate in any of the medical procedures, tests, etc. which your employer is required to make available to you. Medical surveillance can, however, play a very important role in protecting your health. You are strongly encouraged, therefore, to participate in a meaningful fashion. The standard contains a multiple physician review mechanism which would give you a chance to have a physician of your choice directly participate in the medical surveillance program. If you were dissatisfied with an examination by a physician chosen by your employer, you could select a second physician to conduct an independent analysis. The two doctors would attempt to resolve any differences of opinion, and select a third physician to resolve any firm dispute. Generally your employer will choose the physician who conducts medical surveillance under the lead standard—unless you and your employer can agree on the choice of a physician or physicians. Some companies and unions have agreed in advance, for example, to use certain independent medical laboratories or panels of physicians. Any of these arrangements are acceptable so long as required medical surveillance is made available to workers.
The standard requires your employer to provide certain information to a physician to aid in his or her examination of you. This information includes (1) the standard and its appendices, (2) a description of your duties as they relate to lead exposure, (3) your exposure level, (4) a description of personal protective equipment you wear, (5) prior blood lead level results, and (6) prior written medical opinions concerning you that the employer has. After a medical examination or consultation the physician must prepare a written report which must contain (1) the physician's opinion as to whether you have any medical condition which places you at increased risk of material impairment to health from exposure to lead, (2) any recommended special protective measures to be provided to you, (3) any blood lead level determinations, and (4) any recommended limitation on your use of respirators. This last element must include a determination of whether you can wear a powered air purifying respirator (PAPR) if you are found unable to wear a negative pressure respirator.
The medical surveillance program of the lead standard may at some point in time serve to notify certain workers that they have acquired a disease or other adverse medical condition as a result of occupational lead exposure. If this is true, these workers might have legal rights to compensation from public agencies, their employers, firms that supply hazardous products to their employers, or other persons. Some states have laws, including worker compensation laws, that disallow a worker who learns of a job-related health impairment to sue, unless the worker sues within a short period of time after learning of the impairment. (This period of time may be a matter of months or years.) An attorney can be consulted about these possibilities. It should be stressed that OSHA is in no way trying to either encourage or discourage claims or lawsuits. However, since results of the standard's medical surveillance program can significantly affect the legal remedies of a worker who has acquired a job-related disease or impairment, it is proper for OSHA to make you aware of this.
The medical surveillance section of the standard also contains provisions dealing with chelation. Chelation is the use of certain drugs (administered in pill form or injected into the body) to reduce the amount of lead absorbed in body tissues. Experience accumulated by the medical and scientific communities has largely confirmed the effectiveness of this type of therapy for the treatment of very severe lead poisoning. On the other hand, it has also been established that there can be a long list of extremely harmful side effects associated with the use of chelating agents. The medical community has balanced the advantages and disadvantages resulting from the use of chelating agents in various circumstances and has established when the use of these agents is acceptable. The standard includes these accepted limitations due to a history of abuse of chelation therapy by some lead companies. The most widely used chelating agents are calcium disodium EDTA, (Ca Na
The standard prohibits “prophylactic chelation” of any employee by any person the employer retains, supervises or controls. “Prophylactic chelation” is the routine use of chelating or similarly acting drugs to prevent elevated blood levels in workers who are occupationally exposed to lead, or the use of these drugs to routinely lower blood lead levels to predesignated concentrations believed to be ‘safe’. It should be emphasized that where an employer takes a worker who has no symptoms of lead poisoning and has chelation carried out by a physician (either inside or outside of a hospital) solely to reduce the worker's blood lead level, that will generally be considered prophylactic chelation. The use of a hospital and a physician does not mean that prophylactic chelation is not being performed. Routine chelation to prevent increased or reduce current blood lead levels is unacceptable whatever the setting.
The standard allows the use of “therapeutic” or “diagnostic” chelation if administered under the supervision of a licensed physician in a clinical setting with thorough and appropriate medical monitoring. Therapeutic chelation responds to severe lead poisoning where there are marked symptoms. Diagnostic chelation involved giving a patient a dose of the drug then collecting all urine excreted for some period of time as an aid to the diagnosis of lead poisoning.
In cases where the examining physician determines that chelation is appropriate, you must be notified in writing of this fact before such treatment. This will inform you of a potentially harmful treatment, and allow you to obtain a second opinion.
Excessive lead absorption subjects you to increased risk of disease. Medical removal protection (MRP) is a means of protecting you when, for whatever reasons, other methods, such as engineering controls, work practices, and respirators, have failed to provide the protection you need. MRP involves the temproary removal of a worker from his or her regular job to a place of significantly lower exposure without any loss of earnings, seniority, or other employment rights or benefits. The purpose of this program is to cease further lead absorption and allow your body to naturally excrete lead which has previously been absorbed. Temporary medical removal can result from an elevated blood lead level, or a medical opinion. Up to 18 months of protection is provided as a result of either form of removal. The vast majority of removed workers, however, will return to their former jobs long before this eighteen month period expires. The standard contains special provisions to deal with the extraordinary but possible case where a longterm worker's blood lead level does not adequately decline during eighteen months of removal.
During the first year of the standard, if your blood lead level is 80 µg/100g or above you must be removed from any exposure where your air lead level without a respirator would be 100 µg/m
Removal blood lead (µg/100 g) | Air lead (µg/m 3) | Return blood lead (µg/100 g) | |
---|---|---|---|
After Mar. 1, 1980 | 70 and above | 50 and above | At or below 50. |
After Mar. 1, 1981 | 60 and above | 30 and above | At or below 40. |
After Mar. 1, 1983 | 50 and above averaged over six months | 30 and above | Do. |
You may also be removed from exposure even if your blood lead levels are below these criteria if a final medical determination indicates that you temporarily need reduced lead exposure for medical reasons. If the physician who is implementing your employers medical program makes a final written opinion recommending your removal or other special protective measures, your employer must implement the physician's recommendation. If you are removed in this manner, you may only be returned when the doctor indicates that it is safe for you to do so.
The standard does not give specific instructions dealing with what an employer must do with a removed worker. Your job assignment upon removal is a matter for you, your employer and your union (if any) to work out consistent with existing procedures for job assignments. Each removal must be accomplished in a manner consistent with existing collective bargaining relationships. Your employer is given broad discretion to implement temporary removals so long as no attempt is made to override existing agreements. Similarly, a removed worker is provided no right to veto an employer's choice which satisfies the standard.
In most cases, employers will likely transfer removed employees to other jobs with sufficiently low lead exposure. Alternatively, a worker's hours may be reduced so that the time weighted average exposure is reduced, or he or she may be temporarily laid off if no other alternative is feasible.
In all of these situation, MRP benefits must be provided during the period of removal—i.e., you continue to receive the same earnings, seniority, and other rights and benefits you would have had if you had not been removed. Earnings includes more than just your base wage; it includes overtime, shift differentials, incentives, and other compensation you would have earned if you had not been removed. During the period of removal you must also be provided with appropriate follow-up medical surveillance. If you were removed because your blood lead level was too high, you must be provided with a monthly blood test. If a medical opinion caused your removal, you must be provided medical tests or examinations that the doctor believes to be appropriate. If you do not participate in this follow up medical surveillance, you may lose your eligibility for MRP benefits.
When you are medically eligible to return to your former job, your employer must return you to your “former job status.” This means that you are entitled to the position, wages, benefits, etc., you would have had if you had not been removed. If you would still be in your old job if no removal had occurred that is where you go back. If not, you are returned consistent with whatever job assignment discretion your employer would have had if no removal had occurred. MRP only seeks to maintain your rights, not expand them or diminish them.
If you are removed under MRP and you are also eligible for worker compensation or other compensation for lost wages, your employer's MRP benefits obligation is reduced by the amount that you actually receive from these other sources. This is also true if you obtain other employment during the time you are laid off with MRP benefits.
The standard also covers situations where an employer voluntarily removes a worker from exposure to lead due to the effects of lead on the employee's medical condition, even though the standard does not require removal. In these situations MRP benefits must still be provided as though the standard required removal. Finally, it is important to note that in all cases where removal is required, respirators cannot be used as a substitute. Respirators may be used before removal becomes necessary, but not as an alternative to a transfer to a low exposure job, or to a lay-off with MRP benefits.
Your employer is required to provide an information and training program for all employees exposed to lead above the action level or who may suffer skin or eye irritation from lead. This program must inform these employees of the specific hazards associated with their work environment, protective measures which can be taken, the danger of lead to their bodies (including their reproductive systems), and their rights under the standard. In addition your employer must make readily available to all employees, including those exposed below the action level, a copy of the standard and its appendices and must distribute to all employees any materials provided to the employer by the Occupational Safety and Health Administration (OSHA).
Your employer is required to complete this training program for all employees by August 28, 1979. After this date, all new employees must be trained prior to initial assignment to areas where there is a possibility of exposure over the action level.
This training program must also be provided at least annually thereafter.
The standard requires that the following warning sign be posted in the work areas when the exposure to lead exceeds the PEL:
However, prior to June 1, 2016, employers may use the following legend in lieu of that specified above:
Your employer is required to keep all records of exposure monitoring for airborne lead. These records must include the name and job classification of employees measured, details of the sampling and analytic techniques, the results of this sampling, and the type of respiratory protection being worn by the person sampled. Your employer is also required to keep all records of biological monitoring and medical examination results. These must include the names of the employees, the physician's written opinion, and a copy of the results of the examination. All of the above kinds of records must be kept for 40 years, or for at least 20 years after your termination of employment, whichever is longer.
Recordkeeping is also required if you are temporarily removed from your job under the medical removal protection program. This record must include your name, the date of your removal and return, how the removal was or is being accomplished, and whether or not the reason for the removal was an elevated blood lead level. Your employer is required to keep each medical removal record only for as long as the duration of an employee's employment.
The standard requires that if you request to see or copy environmental monitoring, blood lead level monitoring, or medical removal records, they must be made available to you or to a representative that you authorize. Your union also has access to these records. Medical records other than PbB's must also be provided upon request to you, to your physician or to any other person whom you may specifically designate. Your union does not have access to your personal medical records unless you authorize their access.
When air monitoring for lead is performed at your workplace as required by this standard, your employer must allow you or someone you designate to act as an observer of the monitoring. Observers are entitled to an explanation of the measurement procedure, and to record the results obtained. Since results will not normally be available at the time of the monitoring, observers are entitled to record or receive the results of the monitoring when returned by the laboratory. Your employer is required to provide the observer with any personal protective devices required to be worn by employees working in the area that is being monitored. The employer must require the observer to wear all such equipment and to comply with all other applicable safety and health procedures.
A. Copies of the Standard and explanatory material may be obtained by writing or calling the OSHA Docket Office, U.S. Department of Labor, room N2634, 200 Constitution Avenue, N.W., Washington, DC 20210. Telephone: (202) 219-7894.
1. The standard and summary of the statement of reasons (preamble),
2. The full statement of reasons (preamble)
3. Partial Administrative Stay and Corrections to the standard, (44 FR 5446-5448) January 26, 1979.
4. Notice of the Partial Judicial Stay (44 FR 14554-14555) March 13, 1979.
5. Corrections to the preamble,
6. Additional correction to the preamble concerning the construction industry,
7. Appendices to the standard (Appendices A, B, C),
8. Corrections to appendices,
9. Revision to the standard and an additional appendix (Appendix D),
10. Notice of reopening of lead rulemaking for nine remand industry sectors,
11. Statement of reasons,
12. Statement of reasons,
13. Correction to appendix B,
14. Correction to appendices,
B. Additional information about the standard, its enforcement, and your employer's compliance can be obtained from the nearest OSHA Area Office listed in your telephone directory under United States Government/Department of Labor.
The primary purpose of the Occupational Safety and Health Act of 1970 is to assure, so far as possible, safe and healthful working conditions for every working man and woman. The occupational health standard for inorganic lead
Under this final standard in effect as of March 1, 1979, occupational exposure to inorganic lead is to be limited to 50 µg/m
The standard also provides for a program of biological monitoring and medical surveillance for all employees exposed to levels of inorganic lead above the action level of 30 µg/m
The purpose of this document is to outline the medical surveillance provisions of the standard for inorganic lead, and to provide further information to the physician regarding the examination and evaluation of workers exposed to inorganic lead.
Section 1 provides a detailed description of the monitoring procedure including the required frequency of blood testing for exposed workers, provisions for medical removal protection (MRP), the recommended right of the employee to a second medical opinion, and notification and recordkeeping requirements of the employer. A discussion of the requirements for respirator use and respirator monitoring and OSHA's position on prophylactic chelation therapy are also included in this section.
Section 2 discusses the toxic effects and clinical manifestations of lead poisoning and effects of lead intoxication on enzymatic pathways in heme synthesis. The adverse effects on both male and female reproductive capacity and on the fetus are also discussed.
Section 3 outlines the recommended medical evaluation of the worker exposed to inorganic lead including details of the medical history, physical examination, and recommended laboratory tests, which are based on the toxic effects of lead as discussed in Section 2.
Section 4 provides detailed information concerning the laboratory tests available for the monitoring of exposed workers. Included also is a discussion of the relative value of each test and the limitations and precautions which are necessary in the interpretation of the laboratory results.
Table 1
Permissible airborne lead levels by industry (µg/m 3) 1 | Effective date | |||||
---|---|---|---|---|---|---|
Mar. 1, 1979 | Mar. 1, 1980 | Mar. 1, 1981 | Mar. 1, 1982 | Mar. 1, 1984 | Mar. 1, 1989 (final) | |
1. Primary lead production | 200 | 200 | 200 | 100 | 100 | 50 |
2. Secondary lead production | 200 | 200 | 200 | 100 | 50 | 50 |
3. Lead-acid battery manufacturing | 200 | 200 | 100 | 100 | 50 | 50 |
4. Nonferrous foundries | 200 | 100 | 100 | 100 | 50 | 50 |
5. Lead pigment manufacturing | 200 | 200 | 200 | 100 | 50 | 50 |
6. All other industries | 200 | 50 | 50 | 50 | 50 | 50 |
1 Airborne levels to be achieved without reliance or respirator protection through a combination of engineering, work practice and other administrative controls. While these controls are being implemented respirators must be used to meet the 50 µg/m 3 exposure limit.
Under the occupational health standard for inorganic lead, a program of biological monitoring and medical surveillance is to be made available to all employees exposed to lead above the action level of 30 µg/m
Under this program, the blood lead level of all employees who are exposed to lead above the action level of 30 µg/m
An annual medical examination and consultation performed under the guidelines discussed in Section 3 is to be made available to each employee for whom a blood test conducted at any time during the preceding 12 months indicated a blood lead level at or above 40 µg/100 g. Also, an examination is to be given to all employees prior to their assignment to an area in which airborne lead concentrations reach or exceed the action level. In addition, a medical examination must be provided as soon as possible after notification by an employee that the employee has developed signs or symptoms commonly associated with lead intoxication, that the employee desires medical advice regarding lead exposure and the ability to procreate a healthy child, or that the employee has demonstrated difficulty in breathing during a respirator fitting test or during respirator use. An examination is also to be made available to each employee removed from exposure to lead due to a risk of sustaining material impairment to health, or otherwise limited or specially protected pursuant to medical recommendations.
Results of biological monitoring or the recommendations of an examining physician may necessitate removal of an employee from further lead exposure pursuant to the standard's medical removal protection (MRP) program. The object of the MRP program is to provide temporary medical removal to workers either with substantially elevated blood lead levels or otherwise at risk of sustaining material health impairment from continued substantial exposure to lead. The following guidelines which are summarized in Table 2 were created under the standard for the temporary removal of an exposed employee and his or her subsequent return to work in an exposure area.
Table 2
Effective date | |||||
---|---|---|---|---|---|
Mar. 1, 1979 | Mar. 1, 1980 | Mar. 1, 1981 | Mar. 1, 1982 | Mar. 1, 1983 (final) | |
A. Blood lead level requiring employee medical removal. (Level must be confirmed with second follow-up blood lead level within two weeks of first report.) | ≥80 µg/100 g | ≥70µg/100 g | ≥60 µg/100 g | ≥60 µg/100 g | ≥60µg/100 g or average of last three blood samples or all blood samples over previous 6 months (whichever is over a longer time period) is 50 µg/100 g or greater unless last blood sample is 40 µg/100 g or less. |
B. Frequency which employees exposed to action level of lead (30 µg/m 3 TWA) must have blood lead level checked (ZPP is also required in each occasion that a blood lead is obtained.): | |||||
1. Last blood lead level less than 40 µg/100 g | Every 6 months | Every 6 months | Every 6 months | Every 6 months | Every 6 months. |
2. Last blood lead level between 40 µg/100 g and level requiring medical removal (see A above) | Every 2 months | Every 2 months | Every 2 months | Every 2 months | Every 2 months. |
3. Employees removed from exposure to lead because of an elevated blood lead level | Every 1 month | Every 1 month | Every 1 month | Every 1 month | Every 1 month. |
C. Permissible airborne exposure limit for workers removed from work due to an elevated blood lead level (without regard to respirator protection) | 100 µg/m 3 8 hr TWA | 50 µg/m 3 8 hr TWA | 30 µg/m 3 8 hr TWA | 30 µg/m 3 8 hr TWA | 30 µg/m 3 8 hr TWA. |
D. Blood lead level confirmed with a second blood analysis, at which employee may return to work. Permissible exposure without regard to respirator protection is listed by industry in Table I | ·60 µg/100 g | ·50 µg/100 g | ·40 µg/100 g | ·40 µg/100 g | ·40 µg/100 g. |
Under the standard's ultimate worker removal criteria, a worker is to be removed from any work having any eight hour TWA exposure to lead of 30 µg/m
During the first two years that the ultimate removal criteria are being phased in, the return criteria have been set to assure that a worker's blood lead level has substantially declined during the period of removal. From March 1, 1979 to March 1, 1980, the blood lead level requiring employee medical removal is 80 µg/100 g. Workers found to have a confirmed blood lead at this level or greater need only be removed from work having a daily 8 hour TWA exposure to lead at or above 100 µg/m
As part of the standard, the employer is required to notify in writing each employee whose blood lead level exceeds 40 µg/100 g. In addition each such employee is to be informed that the standard requires medical removal with MRP benefits, discussed below, when an employee's blood lead level exceeds the above defined limits.
In addition to the above blood lead level criteria, temporary worker removal may also take place as a result of medical determinations and recommendations. Written medical opinions must be prepared after each examination pursuant to the standard. If the examining physician includes a medical finding, determination or opinion that the employee has a medical condition which places the employee at increased risk of material health impairment from exposure to lead, then the employee must be removed from exposure to lead at or above the action level. Alternatively, if the examining physician recommends special protective measures for an employee (e.g., use of a powered air purifying respirator) or recommends limitations on an employee's exposure to lead, then the employer must implement these recommendations. Recommendations may be more stringent than the specific provisions of the standard. The examining physician, therefore, is given broad flexibility to tailor special protective procedures to the needs of individual employees. This flexibility extends to the evaluation and management of pregnant workers and male and female workers who are planning to raise children. Based on the history, physical examination, and laboratory studies, the physician might recommend special protective measures or medical removal for an employee who is pregnant or who is planning to conceive a child when, in the physician's judgment, continued exposure to lead at the current job would pose a significant risk. The return of the employee to his or her former job status, or the removal of special protections or limitations, depends upon the examining physician determining that the employee is no longer at increased risk of material impairment or that special measures are no longer needed.
During the period of any form of special protection or removal, the employer must maintain the worker's earnings, seniority, and other employment rights and benefits (as though the worker had not been removed) for a period of up to 18 months. This economic protection will maximize meaningful worker participation in the medical surveillance program, and is appropriate as part of the employer's overall obligation to provide a safe and healthful workplace. The provisions of MRP benefits during the employee's removal period may, however, be conditioned upon participation in medical surveillance.
On rare occasions, an employee's blood lead level may not acceptably decline within 18 months of removal. This situation will arise only in unusual circumstances, thus the standard relies on an individual medical examination to determine how to protect such an employee. This medical determination is to be based on both laboratory values, including lead levels, zinc protoporphyrin levels, blood counts, and other tests felt to be warranted, as well as the physician's judgment that any symptoms or findings on physical examination are a result of lead toxicity. The medical determination may be that the employee is incapable of ever safely returning to his or her former job status. The medical determination may provide additional removal time past 18 months for some employees or specify special protective measures to be implemented.
The lead standard provides for a multiple physician review in cases where the employee wishes a second opinion concerning potential lead poisoning or toxicity. If an employee wishes a second opinion, he or she can make an appointment with a physician of his or her choice. This second physician will review the findings, recommendations or determinations of the first physician and conduct any examinations, consultations or tests deemed necessary in an attempt to make a final medical determination. If the first and second physicians do not agree in their assessment they must try to resolve their differences. If they cannot reach an agreement then they must designate a third physician to resolve the dispute.
The employer must provide examining and consulting physicians with the following specific information: a copy of the lead regulations and all appendices, a description of the employee's duties as related to exposure, the exposure level to lead and any other toxic substances (if applicable), a description of personal protective equipment used, blood lead levels, and all prior written medical opinions regarding the employee in the employer's possession or control. The employer must also obtain from the physician and provide the employee with a written medical opinion containing blood lead levels, the physicians's opinion as to whether the employee is at risk of material impairment to health, any recommended protective measures for the employee if further exposure is permitted, as well as any recommended limitations upon an employee's use of respirators.
Employers must instruct each physician not to reveal to the employer in writing or in any other way his or her findings, laboratory results, or diagnoses which are felt to be unrelated to occupational lead exposure. They must also instruct each physician to advise the employee of any occupationally or non-occupationally related medical condition requiring further treatment or evaluation.
The standard provides for the use of respirators where engineering and other primary controls have not been fully implemented. However, the use of respirator protection shall not be used in lieu of temporary medical removal due to elevated blood lead levels or findings that an employee is at risk of material health impairment. This is based on the numerous inadequacies of respirators including skin rash where the facepiece makes contact with the skin, unacceptable stress to breathing in some workers with underlying cardiopulmonary impairment, difficulty in providing adequate fit, the tendency for respirators to create additional hazards by interfering with vision, hearing, and mobility, and the difficulties of assuring the maximum effectiveness of a complicated work practice program involving respirators. Respirators do, however, serve a useful function where engineering and work practice controls are inadequate by providing supplementary, interim, or short-term protection, provided they are properly selected for the environment in which the employee will be working, properly fitted to the employee, maintained and cleaned periodically, and worn by the employee when required.
In its final standard on occupational exposure to inorganic lead, OSHA has prohibited prophylactic chelation. Diagnostic and therapeutic chelation are permitted only under the supervision of a licensed physician with appropriate medical monitoring in an acceptable clinical setting. The decision to initiate chelation therapy must be made on an individual basis and take into account the severity of symptoms felt to be a result of lead toxicity along with blood lead levels, ZPP levels, and other laboratory tests as appropriate. EDTA and penicillamine which are the primary chelating agents used in the therapy of occupational lead poisoning have significant potential side effects and their use must be justified on the basis of expected benefits to the worker. Unless frank and severe symptoms are present, therapeutic chelation is not recommended given the opportunity to remove a worker from exposure and allow the body to naturally excrete accumulated lead. As a diagnostic aid, the chelation mobilization test using CA-EDTA has limited applicability. According to some investigators, the test can differentiate between lead-induced and other nephropathies. The test may also provide an estimation of the mobile fraction of the total body lead burden.
Employers are required to assure that accurate records are maintained on exposure monitoring, medical surveillance, and medical removal for each employee. Exposure monitoring and medical surveillance records must be kept for 40 years or the duration of employment plus 20 years, whichever is longer, while medical removal records must be maintained for the duration of employment. All records required under the standard must be made available upon request to the Assistant Secretary of Labor for Occupational Safety and Health and the Director of the National Institute for Occupational Safety and Health. Employers must also make environmental and biological monitoring and medical removal records available to affected employees and to former employees or their authorized employee representatives. Employees or their specifically designated representatives have access to their entire medical surveillance records.
In addition, the standard requires that the employer inform all workers exposed to lead at or above the action level of the provisions of the standard and all its appendices, the purpose and description of medical surveillance and provisions for medical removal protection if temporary removal is required. An understanding of the potential health effects of lead exposure by all exposed employees along with full understanding of their rights under the lead standard is essential for an effective monitoring program.
Although the toxicity of lead has been known for 2,000 years, the knowledge of the complex relationship between lead exposure and human response is still being refined. Significant research into the toxic properties of lead continues throughout the world, and it should be anticipated that our understanding of thresholds of effects and margins of safety will be improved in future years. The provisions of the lead standard are founded on two prime medical judgments: first, the prevention of adverse health effects from exposure to lead throughout a working lifetime requires that worker blood lead levels be maintained at or below 40 µg/100 g and second, the blood lead levels of workers, male or female, who intend to parent in the near future should be maintained below 30 µg/100 g to minimize adverse reproductive health effects to the parents and developing fetus. The adverse effects of lead on reproduction are being actively researched and OSHA encourages the physician to remain abreast of recent developments in the area to best advise pregnant workers or workers planning to conceive children.
The spectrum of health effects caused by lead exposure can be subdivided into five developmental stages: normal, physiological changes of uncertain significance, pathophysiological changes, overt symptoms (morbidity), and mortality. Within this process there are no sharp distinctions, but rather a continuum of effects. Boundaries between categories overlap due to the wide variation of individual responses and exposures in the working population. OSHA's development of the lead standard focused on pathophysiological changes as well as later stages of disease.
1. Heme Synthesis Inhibition. The earliest demonstrated effect of lead involves its ability to inhibit at least two enzymes of the heme synthesis pathway at very low blood levels. Inhibition of delta aminolevulinic acid dehydrase (ALA-D) which catalyzes the conversion of delta-aminolevulinic acid (ALA) to protoporphyrin is observed at a blood lead level below 20 µg/100 g whole blood. At a blood lead level of 40 ug/100 g, more than 20% of the population would have 70% inhibition of ALA-D. There is an exponential increase in ALA excretion at blood lead levels greater than 40 µg/100 g.
Another enzyme, ferrochelatase, is also inhibited at low blood lead levels. Inhibition of ferrochelatase leads to increased free erythrocyte protoporphyrin (FEP) in the blood which can then bind to zinc to yield zinc protoporphyrin. At a blood lead level of 50 µg/100 g or greater, nearly 100% of the population will have an increase in FEP. There is also an exponential relationship between blood lead levels greater than 40 µg/100 g and the associated ZPP level, which has led to the development of the ZPP screening test for lead exposure.
While the significance of these effects is subject to debate, it is OSHA's position that these enzyme disturbances are early stages of a disease process which may eventually result in the clinical symptoms of lead poisoning. Whether or not the effects do progress to the later stages of clinical disease, disruption of these enzyme processes over a working lifetime is considered to be a material impairment of health.
One of the eventual results of lead-induced inhibition of enzymes in the heme synthesis pathway is anemia which can be asymptomatic if mild but associated with a wide array of symptoms including dizziness, fatigue, and tachycardia when more severe. Studies have indicated that lead levels as low as 50 µg/100 g can be associated with a definite decreased hemoglobin, although most cases of lead-induced anemia, as well as shortened red-cell survival times, occur at lead levels exceeding 80 µg/100 g. Inhibited hemoglobin synthesis is more common in chronic cases whereas shortened erythrocyte life span is more common in acute cases.
In lead-induced anemias, there is usually a reticulocytosis along with the presence of basophilic stippling, and ringed sideroblasts, although none of the above are pathognomonic for lead-induced anemia.
2. Neurological Effects. Inorganic lead has been found to have toxic effects on both the central and peripheral nervous systems. The earliest stages of lead-induced central nervous system effects first manifest themselves in the form of behavioral disturbances and central nervous system symptoms including irritability, restlessness, insomnia and other sleep disturbances, fatigue, vertigo, headache, poor memory, tremor, depression, and apathy. With more severe exposure, symptoms can progress to drowsiness, stupor, hallucinations, delerium, convulsions and coma.
The most severe and acute form of lead poisoning which usually follows ingestion or inhalation of large amounts of lead is acute encephalopathy which may arise precipitously with the onset of intractable seizures, coma, cardiorespiratory arrest, and death within 48 hours.
While there is disagreement about what exposure levels are needed to produce the earliest symptoms, most experts agree that symptoms definitely can occur at blood lead levels of 60 µg/100 g whole blood and therefore recommend a 40 µg/100 g maximum. The central nervous system effects frequently are not reversible following discontinued exposure or chelation therapy and when improvement does occur, it is almost always only partial.
The peripheral neuropathy resulting from lead exposure characteristically involves only motor function with minimal sensory damage and has a marked predilection for the extensor muscles of the most active extremity. The peripheral neuropathy can occur with varying degrees of severity. The earliest and mildest form which can be detected in workers with blood lead levels as low as 50 µg/100 g is manifested by slowing of motor nerve conduction velocity often without clinical symptoms. With progression of the neuropathy there is development of painless extensor muscle weakness usually involving the extensor muscles of the fingers and hand in the most active upper extremity, followed in severe cases by wrist drop or, much less commonly, foot drop.
In addition to slowing of nerve conduction, electromyographical studies in patients with blood lead levels greater than 50 µg/100 g have demonstrated a decrease in the number of acting motor unit potentials, an increase in the duration of motor unit potentials, and spontaneous pathological activity including fibrillations and fasciculations. Whether these effects occur at levels of 40 µg/100 g is undetermined.
While the peripheral neuropathies can occasionally be reversed with therapy, again such recovery is not assured particularly in the more severe neuropathies and often improvement is only partial. The lack of reversibility is felt to be due in part to segmental demyelination.
3. Gastrointestinal. Lead may also affect the gastrointestinal system producing abdominal colic or diffuse abdominal pain, constipation, obstipation, diarrhea, anorexia, nausea and vomiting. Lead colic rarely develops at blood lead levels below 80 µg/100 g.
4. Renal. Renal toxicity represents one of the most serious health effects of lead poisoning. In the early stages of disease nuclear inclusion bodies can frequently be identified in proximal renal tubular cells. Renal function remains normal and the changes in this stage are probably reversible. With more advanced disease there is progressive interstitial fibrosis and impaired renal function. Eventually extensive interstitial fibrosis ensues with sclerotic glomeruli and dilated and atrophied proximal tubules; all represent end stage kidney disease. Azotemia can be progressive, eventually resulting in frank uremia necessitating dialysis. There is occasionally associated hypertension and hyperuricemia with or without gout.
Early kidney disease is difficult to detect. The urinalysis is normal in early lead nephropathy and the blood urea nitrogen and serum creatinine increase only when two-thirds of kidney function is lost. Measurement of creatinine clearance can often detect earlier disease as can other methods of measurement of glomerular filtration rate. An abnormal Ca-EDTA mobilization test has been used to differentiate between lead-induced and other nephropathies, but this procedure is not widely accepted. A form of Fanconi syndrome with aminoaciduria, glycosuria, and hyperphosphaturia indicating severe injury to the proximal renal tubules is occasionally seen in children.
5. Reproductive effects. Exposure to lead can have serious effects on reproductive function in both males and females. In male workers exposed to lead there can be a decrease in sexual drive, impotence, decreased ability to produce healthy sperm, and sterility. Malformed sperm (teratospermia), decreased number of sperm (hypospermia), and sperm with decreased motility (asthenospermia) can all occur. Teratospermia has been noted at mean blood lead levels of 53 µg/100 g and hypospermia and asthenospermia at 41 µg/100 g. Furthermore, there appears to be a dose-response relationship for teratospermia in lead exposed workers.
Women exposed to lead may experience menstrual disturbances including dysmenorrhea, menorrhagia and amenorrhea. Following exposure to lead, women have a higher frequency of sterility, premature births, spontaneous miscarriages, and stillbirths.
Germ cells can be affected by lead and cause genetic damage in the egg or sperm cells before conception and result in failure to implant, miscarriage, stillbirth, or birth defects.
Infants of mothers with lead poisoning have a higher mortality during the first year and suffer from lowered birth weights, slower growth, and nervous system disorders.
Lead can pass through the placental barrier and lead levels in the mother's blood are comparable to concentrations of lead in the umbilical cord at birth. Transplacental passage becomes detectable at 12-14 weeks of gestation and increases until birth.
There is little direct data on damage to the fetus from exposure to lead but it is generally assumed that the fetus and newborn would be at least as susceptible to neurological damage as young children. Blood lead levels of 50-60 µg/100 g in children can cause significant neurobehavioral impairments and there is evidence of hyperactivity at blood levels as low as 25 µg/100 g. Given the overall body of literature concerning the adverse health effects of lead in children, OSHA feels that the blood lead level in children should be maintained below 30 µg/100 g with a population mean of 15 µg/100 g. Blood lead levels in the fetus and newborn likewise should not exceed 30 µg/100 g.
Because of lead's ability to pass through the placental barrier and also because of the demonstrated adverse effects of lead on reproductive function in both the male and female as well as the risk of genetic damage of lead on both the ovum and sperm, OSHA recommends a 30 µg/100 g maximum permissible blood lead level in both males and females who wish to bear children.
6. Other toxic effects. Debate and research continue on the effects of lead on the human body. Hypertension has frequently been noted in occupationally exposed individuals although it is difficult to assess whether this is due to lead's adverse effects on the kidney or if some other mechanism is involved. Vascular and electrocardiogarphic changes have been detected but have not been well characterized. Lead is thought to impair thyroid function and interfere with the pituitary-adrenal axis, but again these effects have not been well defined.
The most important principle in evaluating a worker for any occupational disease including lead poisoning is a high index of suspicion on the part of the examining physician. As discussed in Section 2, lead can affect numerous organ systems and produce a wide array of signs and symptoms, most of which are non-specific and subtle in nature at least in the early stages of disease. Unless serious concern for lead toxicity is present, many of the early clues to diagnosis may easily be overlooked.
The crucial initial step in the medical evaluation is recognizing that a worker's employment can result in exposure to lead. The worker will frequently be able to define exposures to lead and lead containing materials but often will not volunteer this information unless specifically asked. In other situations the worker may not know of any exposures to lead but the suspicion might be raised on the part of the physician because of the industry or occupation of the worker. Potential occupational exposure to lead and its compounds occur in at least 120 occupations, including lead smelting, the manufacture of lead storage batteries, the manufacture of lead pigments and products containing pigments, solder manufacture, shipbuilding and ship repair, auto manufacturing, construction, and painting.
Once the possibility for lead exposure is raised, the focus can then be directed toward eliciting information from the medical history, physical exam, and finally from laboratory data to evaluate the worker for potential lead toxicity.
A complete and detailed work history is important in the initial evaluation. A listing of all previous employment with information on work processes, exposure to fumes or dust, known exposures to lead or other toxic substances, respiratory protection used, and previous medical surveillance should all be included in the worker's record. Where exposure to lead is suspected, information concerning on-the-job personal hygiene, smoking or eating habits in work areas, laundry procedures, and use of any protective clothing or respiratory protection equipment should be noted. A complete work history is essential in the medical evaluation of a worker with suspected lead toxicity, especially when long term effects such as neurotoxicity and nephrotoxicity are considered.
The medical history is also of fundamental importance and should include a listing of all past and current medical conditions, current medications including proprietary drug intake, previous surgeries and hospitalizations, allergies, smoking history, alcohol consumption, and also non-occupational lead exposures such as hobbies (hunting, riflery). Also known childhood exposures should be elicited. Any previous history of hematological, neurological, gastrointestinal, renal, psychological, gynecological, genetic, or reproductive problems should be specifically noted.
A careful and complete review must be performed to assess both recognized complaints and subtle or slowly acquired symptoms which the worker might not appreciate as being significant. The review of symptoms should include the following:
General—weight loss, fatigue, decreased appetite.
Head, Eyes, Ears, Nose, Throat (HEENT)—headaches, visual disturbances or decreased visual acuity, hearing deficits or tinnitus, pigmentation of the oral mucosa, or metallic taste in mouth.
Cardio-pulmonary—shortness of breath, cough, chest pains, palpitations, or orthopnea.
Gastrointestinal—nausea, vomiting, heartburn, abdominal pain, constipation or diarrhea.
Neurologic—irritability, insomnia, weakness (fatigue), dizziness, loss of memory, confusion, hallucinations, incoordination, ataxia, decreased strength in hands or feet, disturbances in gait, difficulty in climbing stairs, or seizures.
Hematologic—pallor, easy fatigability, abnormal blood loss, melena.
Reproductive (male and female and spouse where relevant)—history of infertility, impotence, loss of libido, abnormal menstrual periods, history of miscarriages, stillbirths, or children with birth defects.
Musculo-skeletal—muscle and joint pains.
The physical examination should emphasize the neurological, gastrointestinal, and cardiovascular systems. The worker's weight and blood pressure should be recorded and the oral mucosa checked for pigmentation characteristic of a possible Burtonian or lead line on the gingiva. It should be noted, however, that the lead line may not be present even in severe lead poisoning if good oral hygiene is practiced.
The presence of pallor on skin examination may indicate an anemia, which if severe might also be associated with a tachycardia. If an anemia is suspected, an active search for blood loss should be undertaken including potential blood loss through the gastrointestinal tract.
A complete neurological examination should include an adequate mental status evaluation including a search for behavioral and psychological disturbances, memory testing, evaluation for irritability, insomnia, hallucinations, and mental clouding. Gait and coordination should be examined along with close observation for tremor. A detailed evaluation of peripheral nerve function including careful sensory and motor function testing is warranted. Strength testing particularly of extensor muscle groups of all extremities is of fundamental importance.
Cranial nerve evaluation should also be included in the routine examination.
The abdominal examination should include auscultation for bowel sounds and abdominal bruits and palpation for organomegaly, masses, and diffuse abdominal tenderness.
Cardiovascular examination should evaluate possible early signs of congestive heart failure. Pulmonary status should be addressed particularly if respirator protection is contemplated.
As part of the medical evaluation, the lead standard requires the following laboratory studies:
1. Blood lead level
2. Hemoglobin and hematocrit determinations, red cell indices, and examination of the peripheral blood smear to evaluate red blood cell morphology
3. Blood urea nitrogen
4. Serum creatinine
5. Routine urinalysis with microscopic examination.
6. A zinc protoporphyrin level
In addition to the above, the physician is authorized to order any further laboratory or other tests which he or she deems necessary in accordance with sound medical practice. The evaluation must also include pregnancy testing or laboratory evaluation of male fertility if requested by the employee.
Additional tests which are probably not warranted on a routine basis but may be appropriate when blood lead and ZPP levels are equivocal include delta aminolevulinic acid and coproporphyrin concentrations in the urine, and dark-field illumination for detection of basophilic stippling in red blood cells.
If an anemia is detected further studies including a careful examination of the peripheral smear, reticulocyte count, stool for occult blood, serum iron, total iron binding capacity, bilirubin, and, if appropriate, vitamin B12 and folate may be of value in attempting to identify the cause of the anemia.
If a peripheral neuropathy is suspected, nerve conduction studies are warranted both for diagnosis and as a basis to monitor any therapy.
If renal disease is questioned, a 24 hour urine collection for creatinine clearance, protein, and electrolytes may be indicated. Elevated uric acid levels may result from lead-induced renal disease and a serum uric acid level might be performed.
An electrocardiogram and chest x-ray may be obtained as deemed appropriate.
Sophisticated and highly specialized testing should not be done routinely and where indicated should be under the direction of a specialist.
The blood lead level at present remains the single most important test to monitor lead exposure and is the test used in the medical surveillance program under the lead standard to guide employee medical removal. The ZPP has several advantages over the blood lead level. Because of its relatively recent development and the lack of extensive data concerning its interpretation, the ZPP currently remains an ancillary test.
This section will discuss the blood lead level and ZPP in detail and will outline their relative advantages and disadvantages. Other blood tests currently available to evaluate lead exposure will also be reviewed.
The blood lead level is a good index of current or recent lead absorption when there is no anemia present and when the worker has not taken any chelating agents. However, blood lead levels along with urinary lead levels do not necessarily indicate the total body burden of lead and are not adequate measures of past exposure. One reason for this is that lead has a high affinity for bone and up to 90% of the body's total lead is deposited there. A very important component of the total lead body burden is lead in soft tissue (liver, kidney, and brain). This fraction of the lead body burden, the biologically active lead, is not entirely reflected by blood lead levels since it is a function of the dynamics of lead absorption, distribution, deposition in bone and excretion. Following discontinuation of exposure to lead, the excess body burden is only slowly mobilized from bone and other relatively stable body stores and excreted. Consequently, a high blood lead level may only represent recent heavy exposure to lead without a significant total body excess and likewise a low blood lead level does not exclude an elevated total body burden of lead.
Also due to its correlation with recent exposures, the blood lead level may vary considerably over short time intervals.
To minimize laboratory error and erroneous results due to contamination, blood specimens must be carefully collected after thorough cleaning of the skin with appropriate methods using lead-free blood containers and analyzed by a reliable laboratory. Under the standard, samples must be analyzed in laboratories which are approved by the Center for Disease Control (CDC) or which have received satisfactory grades in proficiency testing by the CDC in the previous year. Analysis is to be made using atomic absorption spectrophotometry, anodic stripping voltammetry or any method which meets the accuracy requirements set forth by the standard.
The determination of lead in urine is generally considered a less reliable monitoring technique than analysis of whole blood primarily due to individual variability in urinary excretion capacity as well as the technical difficulty of obtaining accurate 24 hour urine collections. In addition, workers with renal insufficiency, whether due to lead or some other cause, may have decreased lead clearance and consequently urine lead levels may underestimate the true lead burden. Therefore, urine lead levels should not be used as a routine test.
The zinc protoporphyrin test, unlike the blood lead determination, measures an adverse metabolic effect of lead and as such is a better indicator of lead toxicity than the level of blood lead itself. The level of ZPP reflects lead absorption over the preceding 3 to 4 months, and therefore is a better indicator of lead body burden. The ZPP requires more time than the blood lead to read significantly elevated levels; the return to normal after discontinuing lead exposure is also slower. Furthermore, the ZPP test is simpler, faster, and less expensive to perform and no contamination is possible. Many investigators believe it is the most reliable means of monitoring chronic lead absorption.
Zinc protoporphyrin results from the inhibition of the enzyme ferrochelatase which catalyzes the insertion of an iron molecule into the protoporphyrin molecule, which then becomes heme. If iron is not inserted into the molecule then zinc, having a greater affinity for protoporphyrin, takes the place of the iron, forming ZPP.
An elevation in the level of circulating ZPP may occur at blood lead levels as low as 20-30 µg/100 g in some workers. Once the blood lead level has reached 40 µg/100 g there is more marked rise in the ZPP value from its normal range of less than 100 µg/100 ml. Increases in blood lead levels beyond 40 µg/100 g are associated with exponential increases in ZPP.
Whereas blood lead levels fluctuate over short time spans, ZPP levels remain relatively stable. ZPP is measured directly in red blood cells and is present for the cell's entire 120 day life-span. Therefore, the ZPP level in blood reflects the average ZPP production over the previous 3-4 months and consequently the average lead exposure during that time interval.
It is recommended that a hematocrit be determined whenever a confirmed ZPP of 50 µg/100 ml whole blood is obtained to rule out a significant underlying anemia. If the ZPP is in excess of 100 µg/100 ml and not associated with abnormal elevations in blood lead levels, the laboratory should be checked to be sure that blood leads were determined using atomic absorption spectrophotometry anodic stripping voltammetry, or any method which meets the accuracy requirements set forth by the standard by a CDC approved laboratory which is experienced in lead level determinations. Repeat periodic blood lead studies should be obtained in all individuals with elevated ZPP levels to be certain that an associated elevated blood lead level has not been missed due to transient fluctuations in blood leads.
ZPP has a characteristic fluorescence spectrum with a peak at 594 nm which is detectable with a hematofluorimeter. The hematofluorimeter is accurate and portable and can provide on-site, instantaneous results for workers who can be frequently tested via a finger prick.
However, careful attention must be given to calibration and quality control procedures. Limited data on blood lead—ZPP correlations and the ZPP levels which are associated with the adverse health effects discussed in Section 2 are the major limitations of the test. Also it is difficult to correlate ZPP levels with environmental exposure and there is some variation of response with age and sex. Nevertheless, the ZPP promises to be an important diagnostic test for the early detection of lead toxicity and its value will increase as more data is collected regarding its relationship to other manifestations of lead poisoning.
Levels of delta-aminolevulinic acid (ALA) in the urine are also used as a measure of lead exposure. Increasing concentrations of ALA are believed to result from the inhibition of the enzyme delta-aminolevulinic acid dehydrase (ALA-D). Although the test is relatively easy to perform, inexpensive, and rapid, the disadvantages include variability in results, the necessity to collect a complete 24 hour urine sample which has a specific gravity greater than 1.010, and also the fact that ALA decomposes in the presence of light.
The pattern of porphyrin excretion in the urine can also be helpful in identifying lead intoxication. With lead poisoning, the urine concentrations of coproporphyrins I and II, porphobilinogen and uroporphyrin I rise. The most important increase, however, is that of coproporphyrin III; levels may exceed 5,000 µg/1 in the urine in lead poisoned individuals, but its correlation with blood lead levels and ZPP are not as good as those of ALA. Increases in urinary porphyrins are not diagnostic of lead toxicity and may be seen in porphyria, some liver diseases, and in patients with high reticulocyte counts.
Summary. The Occupational Safety and Health Administration's standard for inorganic lead places significant emphasis on the medical surveillance of all workers exposed to levels of inorganic lead above the action level of 30 µg/m
Even with adequate worker education on the adverse health effects of lead and appropriate training in work practices, personal hygiene and other control measures, the physician has a primary responsibility for evaluating potential lead toxicity in the worker. It is only through a careful and detailed medical and work history, a complete physical examination and appropriate laboratory testing that an accurate assessment can be made. Many of the adverse health effects of lead toxicity are either irreversible or only partially reversible and therefore early detection of disease is very important.
This document outlines the medical monitoring program as defined by the occupational safety and health standard for inorganic lead. It reviews the adverse health effects of lead poisoning and describes the important elements of the history and physical examinations as they relate to these adverse effects. Finally, the appropriate laboratory testing for evaluating lead exposure and toxicity is presented.
It is hoped that this review and discussion will give the physician a better understanding of the OSHA standard with the ultimate goal of protecting the health and well-being of the worker exposed to lead under his or her care.
§ 1910.1026 - Chromium (VI).
(a) Scope. (1) This standard applies to occupational exposures to chromium (VI) in all forms and compounds in general industry, except:
(2) Exposures that occur in the application of pesticides regulated by the Environmental Protection Agency or another Federal government agency (e.g., the treatment of wood with preservatives);
(3) Exposures to portland cement; or
(4) Where the employer has objective data demonstrating that a material containing chromium or a specific process, operation, or activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or above 0.5 µgm/m
(b) Definitions. For the purposes of this section the following definitions apply:
Action level means a concentration of airborne chromium (VI) of 2.5 micrograms per cubic meter of air (2.5 µgm/m
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Chromium (VI) [hexavalent chromium or Cr(VI)] means chromium with a valence of positive six, in any form and in any compound.
Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee.
Emergency means any occurrence that results, or is likely to result, in an uncontrolled release of chromium (VI). If an incidental release of chromium (VI) can be controlled at the time of release by employees in the immediate release area, or by maintenance personnel, it is not an emergency.
Employee exposure means the exposure to airborne chromium (VI) that would occur if the employee were not using a respirator.
High-efficiency particulate air [HEPA] filter means a filter that is at least 99.97 percent efficient in removing mono-dispersed particles of 0.3 micrometers in diameter or larger.
Historical monitoring data means data from chromium (VI) monitoring conducted prior to May 30, 2006, obtained during work operations conducted under workplace conditions closely resembling the processes, types of material, control methods, work practices, and environmental conditions in the employer's current operations.
Objective data means information such as air monitoring data from industry-wide surveys or calculations based on the composition or chemical and physical properties of a substance demonstrating the employee exposure to chromium (VI) associated with a particular product or material or a specific process, operation, or activity. The data must reflect workplace conditions closely resembling the processes, types of material, control methods, work practices, and environmental conditions in the employer's current operations.
Physician or other licensed health care professional [PLHCP] is an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows him or her to independently provide or be delegated the responsibility to provide some or all of the particular health care services required by paragraph (k) of this section.
Regulated area means an area, demarcated by the employer, where an employee's exposure to airborne concentrations of chromium (VI) exceeds, or can reasonably be expected to exceed, the PEL.
This section means this § 1910.1026 chromium (VI) standard.
(c) Permissible exposure limit (PEL). The employer shall ensure that no employee is exposed to an airborne concentration of chromium (VI) in excess of 5 micrograms per cubic meter of air (5 µgm/m
(d) Exposure determination—(1) General. Each employer who has a workplace or work operation covered by this section shall determine the 8-hour TWA exposure for each employee exposed to chromium (VI). This determination shall be made in accordance with either paragraph (d)(2) or paragraph (d)(3) of this section.
(2) Scheduled monitoring option. (i) The employer shall perform initial monitoring to determine the 8-hour TWA exposure for each employee on the basis of a sufficient number of personal breathing zone air samples to accurately characterize full shift exposure on each shift, for each job classification, in each work area. Where an employer does representative sampling instead of sampling all employees in order to meet this requirement, the employer shall sample the employee(s) expected to have the highest chromium (VI) exposures.
(ii) If initial monitoring indicates that employee exposures are below the action level, the employer may discontinue monitoring for those employees whose exposures are represented by such monitoring.
(iii) If monitoring reveals employee exposures to be at or above the action level, the employer shall perform periodic monitoring at least every six months.
(iv) If monitoring reveals employee exposures to be above the PEL, the employer shall perform periodic monitoring at least every three months.
(v) If periodic monitoring indicates that employee exposures are below the action level, and the result is confirmed by the result of another monitoring taken at least seven days later, the employer may discontinue the monitoring for those employees whose exposures are represented by such monitoring.
(vi) The employer shall perform additional monitoring when there has been any change in the production process, raw materials, equipment, personnel, work practices, or control methods that may result in new or additional exposures to chromium (VI), or when the employer has any reason to believe that new or additional exposures have occurred.
(3) Performance-oriented option. The employer shall determine the 8-hour TWA exposure for each employee on the basis of any combination of air monitoring data, historical monitoring data, or objective data sufficient to accurately characterize employee exposure to chromium (VI).
(4) Employee notification of determination results. (i) Within 15 work days after making an exposure determination in accordance with paragraph (d)(2) or paragraph (d)(3) of this section, the employer shall individually notify each affected employee in writing of the results of that determination or post the results in an appropriate location accessible to all affected employees.
(ii) Whenever the exposure determination indicates that employee exposure is above the PEL, the employer shall describe in the written notification the corrective action being taken to reduce employee exposure to or below the PEL.
(5) Accuracy of measurement. Where air monitoring is performed to comply with the requirements of this section, the employer shall use a method of monitoring and analysis that can measure chromium (VI) to within an accuracy of plus or minus 25 percent (±25%) and can produce accurate measurements to within a statistical confidence level of 95 percent for airborne concentrations at or above the action level.
(6) Observation of monitoring. (i) Where air monitoring is performed to comply with the requirements of this section, the employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to chromium (VI).
(ii) When observation of monitoring requires entry into an area where the use of protective clothing or equipment is required, the employer shall provide the observer with clothing and equipment and shall assure that the observer uses such clothing and equipment and complies with all other applicable safety and health procedures.
(e) Regulated areas—(1) Establishment. The employer shall establish a regulated area wherever an employee's exposure to airborne concentrations of chromium (VI) is, or can reasonably be expected to be, in excess of the PEL.
(2) Demarcation. The employer shall ensure that regulated areas are demarcated from the rest of the workplace in a manner that adequately establishes and alerts employees of the boundaries of the regulated area.
(3) Access. The employer shall limit access to regulated areas to:
(i) Persons authorized by the employer and required by work duties to be present in the regulated area;
(ii) Any person entering such an area as a designated representative of employees for the purpose of exercising the right to observe monitoring procedures under paragraph (d) of this section; or
(iii) Any person authorized by the Occupational Safety and Health Act or regulations issued under it to be in a regulated area.
(f) Methods of compliance—(1) Engineering and work practice controls. (i) Except as permitted in paragraph (f)(1)(ii) and paragraph (f)(1)(iii) of this section, the employer shall use engineering and work practice controls to reduce and maintain employee exposure to chromium (VI) to or below the PEL unless the employer can demonstrate that such controls are not feasible. Wherever feasible engineering and work practice controls are not sufficient to reduce employee exposure to or below the PEL, the employer shall use them to reduce employee exposure to the lowest levels achievable, and shall supplement them by the use of respiratory protection that complies with the requirements of paragraph (g) of this section.
(ii) Where painting of aircraft or large aircraft parts is performed in the aerospace industry, the employer shall use engineering and work practice controls to reduce and maintain employee exposure to chromium (VI) to or below 25 µgm/m
(iii) Where the employer can demonstrate that a process or task does not result in any employee exposure to chromium (VI) above the PEL for 30 or more days per year (12 consecutive months), the requirement to implement engineering and work practice controls to achieve the PEL does not apply to that process or task.
(2) Prohibition of rotation. The employer shall not rotate employees to different jobs to achieve compliance with the PEL.
(g) Respiratory protection—(1) General. Where respiratory protection is required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph. Respiratory protection is required during:
(i) Periods necessary to install or implement feasible engineering and work practice controls;
(ii) Work operations, such as maintenance and repair activities, for which engineering and work practice controls are not feasible;
(iii) Work operations for which an employer has implemented all feasible engineering and work practice controls and such controls are not sufficient to reduce exposures to or below the PEL;
(iv) Work operations where employees are exposed above the PEL for fewer than 30 days per year, and the employer has elected not to implement engineering and work practice controls to achieve the PEL; or
(v) Emergencies.
(2) Respiratory protection program. Where respirator use is required by this section, the employer shall institute a respiratory protection program in accordance with § 1910.134, which covers each employee required to use a respirator.
(h) Protective work clothing and equipment—(1) Provision and use. Where a hazard is present or is likely to be present from skin or eye contact with chromium (VI), the employer shall provide appropriate personal protective clothing and equipment at no cost to employees, and shall ensure that employees use such clothing and equipment.
(2) Removal and storage. (i) The employer shall ensure that employees remove all protective clothing and equipment contaminated with chromium (VI) at the end of the work shift or at the completion of their tasks involving chromium (VI) exposure, whichever comes first.
(ii) The employer shall ensure that no employee removes chromium (VI)-contaminated protective clothing or equipment from the workplace, except for those employees whose job it is to launder, clean, maintain, or dispose of such clothing or equipment.
(iii) When contaminated protective clothing or equipment is removed for laundering, cleaning, maintenance, or disposal, the employer shall ensure that it is stored and transported in sealed, impermeable bags or other closed, impermeable containers.
(iv) The employer shall ensure that bags or containers of contaminated protective clothing or equipment that are removed from change rooms for laundering, cleaning, maintenance, or disposal are labeled in accordance with the requirements of the Hazard Communication Standard, § 1910.1200.
(3) Cleaning and replacement. (i) The employer shall clean, launder, repair and replace all protective clothing and equipment required by this section as needed to maintain its effectiveness.
(ii) The employer shall prohibit the removal of chromium (VI) from protective clothing and equipment by blowing, shaking, or any other means that disperses chromium (VI) into the air or onto an employee's body.
(iii) The employer shall inform any person who launders or cleans protective clothing or equipment contaminated with chromium (VI) of the potentially harmful effects of exposure to chromium (VI) and that the clothing and equipment should be laundered or cleaned in a manner that minimizes skin or eye contact with chromium (VI) and effectively prevents the release of airborne chromium (VI) in excess of the PEL.
(i) Hygiene areas and practices—(1) General. Where protective clothing and equipment is required, the employer shall provide change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1910.141. Eating and drinking areas provided by the employer shall also be in conformance with § 1910.141.
(2) Change rooms. The employer shall assure that change rooms are equipped with separate storage facilities for protective clothing and equipment and for street clothes, and that these facilities prevent cross-contamination.
(3) Washing facilities. (i) The employer shall provide readily accessible washing facilities capable of removing chromium (VI) from the skin, and shall ensure that affected employees use these facilities when necessary.
(ii) The employer shall ensure that employees who have skin contact with chromium (VI) wash their hands and faces at the end of the work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet.
(4) Eating and drinking areas. (i) Whenever the employer allows employees to consume food or beverages at a worksite where chromium (VI) is present, the employer shall ensure that eating and drinking areas and surfaces are maintained as free as practicable of chromium (VI).
(ii) The employer shall ensure that employees do not enter eating and drinking areas with protective work clothing or equipment unless surface chromium (VI) has been removed from the clothing and equipment by methods that do not disperse chromium (VI) into the air or onto an employee's body.
(5) Prohibited activities. The employer shall ensure that employees do not eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas, or in areas where skin or eye contact with chromium (VI) occurs; or carry the products associated with these activities, or store such products in these areas.
(j) Housekeeping—(1) General. The employer shall ensure that:
(i) All surfaces are maintained as free as practicable of accumulations of chromium (VI).
(ii) All spills and releases of chromium (VI) containing material are cleaned up promptly.
(2) Cleaning methods. (i) The employer shall ensure that surfaces contaminated with chromium (VI) are cleaned by HEPA-filter vacuuming or other methods that minimize the likelihood of exposure to chromium (VI).
(ii) Dry shoveling, dry sweeping, and dry brushing may be used only where HEPA-filtered vacuuming or other methods that minimize the likelihood of exposure to chromium (VI) have been tried and found not to be effective.
(iii) The employer shall not allow compressed air to be used to remove chromium (VI) from any surface unless:
(A) The compressed air is used in conjunction with a ventilation system designed to capture the dust cloud created by the compressed air; or
(B) No alternative method is feasible.
(iv) The employer shall ensure that cleaning equipment is handled in a manner that minimizes the reentry of chromium (VI) into the workplace.
(3) Disposal. The employer shall ensure that:
(i) Waste, scrap, debris, and any other materials contaminated with chromium (VI) and consigned for disposal are collected and disposed of in sealed, impermeable bags or other closed, impermeable containers.
(ii) Bags or containers of waste, scrap, debris, and any other materials contaminated with chromium (VI) that are consigned for disposal are labeled in accordance with the requirements of the Hazard Communication Standard, 29 CFR 1910.1200.
(k) Medical surveillance—(1) General. (i) The employer shall make medical surveillance available at no cost to the employee, and at a reasonable time and place, for all employees:
(A) Who are or may be occupationally exposed to chromium (VI) at or above the action level for 30 or more days a year;
(B) Experiencing signs or symptoms of the adverse health effects associated with chromium (VI) exposure; or
(C) Exposed in an emergency.
(ii) The employer shall assure that all medical examinations and procedures required by this section are performed by or under the supervision of a PLHCP.
(2) Frequency. The employer shall provide a medical examination:
(i) Within 30 days after initial assignment, unless the employee has received a chromium (VI) related medical examination that meets the requirements of this paragraph within the last twelve months;
(ii) Annually;
(iii) Within 30 days after a PLHCP's written medical opinion recommends an additional examination;
(iv) Whenever an employee shows signs or symptoms of the adverse health effects associated with chromium (VI) exposure;
(v) Within 30 days after exposure during an emergency which results in an uncontrolled release of chromium (VI); or
(vi) At the termination of employment, unless the last examination that satisfied the requirements of paragraph (k) of this section was less than six months prior to the date of termination.
(3) Contents of examination. A medical examination consists of:
(i) A medical and work history, with emphasis on: Past, present, and anticipated future exposure to chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin ulceration, or nasal septum perforation; and smoking status and history;
(ii) A physical examination of the skin and respiratory tract; and
(iii) Any additional tests deemed appropriate by the examining PLHCP.
(4) Information provided to the PLHCP. The employer shall ensure that the examining PLHCP has a copy of this standard, and shall provide the following information:
(i) A description of the affected employee's former, current, and anticipated duties as they relate to the employee's occupational exposure to chromium (VI);
(ii) The employee's former, current, and anticipated levels of occupational exposure to chromium (VI);
(iii) A description of any personal protective equipment used or to be used by the employee, including when and for how long the employee has used that equipment; and
(iv) Information from records of employment-related medical examinations previously provided to the affected employee, currently within the control of the employer.
(5) PLHCP's written medical opinion. (i) The employer shall obtain a written medical opinion from the PLHCP, within 30 days for each medical examination performed on each employee, which contains:
(A) The PLHCP's opinion as to whether the employee has any detected medical condition(s) that would place the employee at increased risk of material impairment to health from further exposure to chromium (VI);
(B) Any recommended limitations upon the employee's exposure to chromium (VI) or upon the use of personal protective equipment such as respirators;
(C) A statement that the PLHCP has explained to the employee the results of the medical examination, including any medical conditions related to chromium (VI) exposure that require further evaluation or treatment, and any special provisions for use of protective clothing or equipment.
(ii) The PLHCP shall not reveal to the employer specific findings or diagnoses unrelated to occupational exposure to chromium (VI).
(iii) The employer shall provide a copy of the PLHCP's written medical opinion to the examined employee within two weeks after receiving it.
(l) Communication of chromium (VI) hazards to employees—(1) Hazard communication—general—(i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for chromium (VI).
(ii) In classifying the hazards of chromium (VI) at least the following hazards are to be addressed: Cancer, eye irritation, and skin sensitization.
(iii) Employers shall include chromium (VI) in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of chromium (VI) and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (l)(2) of this section.
(2) Employee information and training. (i) The employer shall ensure that each employee can demonstrate knowledge of at least the following:
(A) The contents of this section; and
(B) The purpose and a description of the medical surveillance program required by paragraph (k) of this section.
(ii) The employer shall make a copy of this section readily available without cost to all affected employees.
(m) Recordkeeping—(1) Air monitoring data. (i) The employer shall maintain an accurate record of all air monitoring conducted to comply with the requirements of this section.
(ii) This record shall include at least the following information:
(A) The date of measurement for each sample taken;
(B) The operation involving exposure to chromium (VI) that is being monitored;
(C) Sampling and analytical methods used and evidence of their accuracy;
(D) Number, duration, and the results of samples taken;
(E) Type of personal protective equipment, such as respirators worn; and
(F) Name and job classification of all employees represented by the monitoring, indicating which employees were actually monitored.
(iii) The employer shall ensure that exposure records are maintained and made available in accordance with 29 CFR 1910.1020.
(2) Historical monitoring data. (i) Where the employer has relied on historical monitoring data to determine exposure to chromium (VI), the employer shall establish and maintain an accurate record of the historical monitoring data relied upon.
(ii) The record shall include information that reflects the following conditions:
(A) The data were collected using methods that meet the accuracy requirements of paragraph (d)(5) of this section;
(B) The processes and work practices that were in use when the historical monitoring data were obtained are essentially the same as those to be used during the job for which exposure is being determined;
(C) The characteristics of the chromium (VI) containing material being handled when the historical monitoring data were obtained are the same as those on the job for which exposure is being determined;
(D) Environmental conditions prevailing when the historical monitoring data were obtained are the same as those on the job for which exposure is being determined; and
(E) Other data relevant to the operations, materials, processing, or employee exposures covered by the exception.
(iii) The employer shall ensure that historical exposure records are maintained and made available in accordance with 29 CFR 1910.1020.
(3) Objective data. (i) The employer shall maintain an accurate record of all objective data relied upon to comply with the requirements of this section.
(ii) This record shall include at least the following information:
(A) The chromium containing material in question;
(B) The source of the objective data;
(C) The testing protocol and results of testing, or analysis of the material for the release of chromium (VI);
(D) A description of the process, operation, or activity and how the data support the determination; and
(E) Other data relevant to the process, operation, activity, material, or employee exposures.
(iii) The employer shall ensure that objective data are maintained and made available in accordance with 29 CFR 1910.1020.
(4) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee covered by medical surveillance under paragraph (k) of this section.
(ii) The record shall include the following information about the employee:
(A) Name;
(B) A copy of the PLHCP's written opinions;
(C) A copy of the information provided to the PLHCP as required by paragraph (k)(4) of this section.
(iii) The employer shall ensure that medical records are maintained and made available in accordance with 29 CFR 1910.1020.
(n) Dates. (1) For employers with 20 or more employees, all obligations of this section, except engineering controls required by paragraph (f) of this section, commence November 27, 2006.
(2) For employers with 19 or fewer employees, all obligations of this section, except engineering controls required by paragraph (f) of this section, commence May 30, 2007.
(3) Except as provided in (n)(4), for all employers, engineering controls required by paragraph (f) of this section shall be implemented no later than May 31, 2010.
(4) In facilities that become parties to the settlement agreement included in appendix A, engineering controls required by paragraph (f) of this section shall be implemented no later than December 31, 2008.
The parties to this Settlement Agreement (“Agreement”) are the Occupational Safety and Health Administration, United States Department of Labor (“OSHA”), the Surface Finishing Industry Council or its successors (“SFIC”), surface-finishing and metal-finishing facilities which have opted into this Agreement pursuant to paragraph 7 (“Company” or “Companies”), Public Citizen Health Research Group (“HRG”), and the United Steel, Paper and Forestry, Rubber, Manufacturing, Energy, Allied Industrial and Service Workers International Union (“Steelworkers”).
Whereas, On February 28, 2006, OSHA promulgated a revised hexavalent chromium standard for general industry (“the Standard”) that includes a permissible exposure limit (“PEL”) for hexavalent chromium of 5 micrograms per cubic meter (“μg/m
Whereas, SFIC filed a Petition for Review of the Standard in the Eleventh Circuit that was consolidated with other Petitions in the Third Circuit (Case No. 06-2272);
Whereas, SFIC filed a Motion for Leave to Intervene in the matter of HRG's Petition for Review in the Third Circuit (Case No. 06-1818), which has been granted;
Now, therefore, the parties to this Agreement do hereby agree to the following terms:
1. Term of this Agreement. This Agreement will be effective upon execution and will expire on May 31, 2010.
2. Accelerated implementation of engineering controls. The Companies agree that in accordance with 29 CFR 1910.1026(f)(1) they will implement those feasible engineering controls necessary to reduce hexavalent chromium levels at their facilities by December 31, 2008, to or below the 5 μg/m
3. Compliance plan and monitoring. In accordance with 29 CFR 1910.1026(d)(4)(ii), each Company will prepare, and update as required, a written plan setting forth the specific control steps being taken to reduce employee exposure to or below the PEL by December 31, 2008. In addition, Companies will make an initial exposure determination as required by 29 CFR 1910.1026(d)(1) using either the procedures for personal breathing zone air samples described in 29 CFR 1910.1026(d)(2) or the performance-oriented option described at 29 CFR 1910.1026(d)(3). Thereafter, Companies will conduct periodic monitoring in accordance with the “Scheduled Monitoring Option” provisions at 29 CFR 1910.1026(d)(2) and related provisions at 29 CFR 1910.1026(d)(4)-(6). The Companies agree that upon request compliance plans prepared in accordance with this paragraph, as well as all monitoring results obtained in compliance with this paragraph, will be provided to OSHA, affected employees and employee representatives.
4. Respirator use. The respiratory protection provisions at 29 CFR 1910.1026(f) and (g) will apply to the Companies in accordance with the terms and dates set forth in the Standard, except that prior to December 31, 2008, for Companies that are in compliance with this Agreement, OSHA will enforce those respiratory protection provisions only with respect to employees who fall into one of the following six (6) categories: (1) Employees who are exposed to hexavalent chromium in excess of the PEL while performing tasks described in Exhibit B to this Agreement; (2) through November 30, 2007, employees whose exposures to hexavalent chromium exceed a “respirator threshold” of 20 μg/m
5. Employee information and training. Company employees will be trained pursuant to the provisions of 29 CFR 1910.1026(l)(2). In addition, the Companies agree to train employees in the provisions of this Agreement within sixty (60) days of the Opt-In Date (defined in paragraph 7 of this Agreement). The training regarding this Agreement shall be provided in language the employees can understand.
6. Enforcement. Within thirty (30) days of the execution of this Agreement, OSHA will publish a notice in the
7. Opt-In Date for Companies to become parties to this Agreement. The
8. Effect on third parties. Nothing in this Agreement constitutes an admission by SFIC or the Companies that a significant risk of material health impairment exists for hexavalent chromium justifying a reduction of the PEL to 5 μg/m
9. OSHA inspections. OSHA may do monitoring inspections to assess compliance with and progress under this Agreement and the Standard, and nothing in this Agreement limits OSHA's right to conduct inspections at Companies” facilities in accordance with the Occupational Safety and Health Act.
10. Scope of Agreement. The terms of this Agreement apply only in the circumstances and to the Companies specified herein. In entering into this Agreement, OSHA is not making any representations regarding its enforcement policy with respect to either (1) The hexavalent chromium standard as applied to employers who are not parties to this Agreement or (2) any other occupational safety or health standards.
11. Effect of invalidation of the Standard. If the Standard is invalidated, nothing in this Agreement shall prevent the application to SFIC or the Companies of any PEL that is promulgated by OSHA on remand. This Agreement would not foreclose SFIC or the Companies from participating in rulemaking proceedings or otherwise challenging any new PEL promulgated by OSHA on remand.
12. Withdrawal of Petitions and Interventions. SFIC agrees to move to withdraw its Petition for Review in the above-captioned case, Case No. 06-2272, within five (5) working days of the execution of this Agreement. SFIC further will move to dismiss its motion to intervene in Case No. 06-1818 and all other challenges simultaneously with its motion to withdraw in Case No. 06-2272 as Petitioner.
13. Attorneys' fees. Each party agrees to bear its own attorneys' fees, costs, and other expenses that have been incurred in connection with SFIC's Petition for Review, SFIC's intervention in HRG's Petition for Review, and the negotiation of this Agreement up to and including filing of the motions to dismiss.
14. Support of Agreement. In the event that all or any portion of this Agreement is challenged in any forum, the signatories below agree to move to intervene in support of this Agreement.
Agreed to this 25th day of October, 2006.
The Companies agree that work towards the implementation of these available engineering and work practice controls should not be delayed to accommodate their completion by December 31, 2008. The Companies are encouraged to implement from among these controls as soon as practicable.
• Minimize droplet formation. Instruments akin to garden hoses are used to rinse off parts coming out of chemical baths. This causes many small droplets to form, which are easily atomized or vaporized and contribute to airborne chromium concentration. The industry is currently developing ways to minimize the formation of small droplets, dripping, or splashing, possibly by reducing hose pressure.
• Minimize air current flow. Strong air currents across these droplets may contribute to their vaporization, and therefore minimizing air current flow across the droplets may reduce airborne hexavalent chromium levels.
• Slow part speeds as feasible. The speed at which parts are pulled out of a chemical tank causes splashing, which adds to chromium vaporization. By slowing the speed at which parts are taken out of tanks, splashing and vaporization can be minimized. The feasibility of this control must be evaluated in light of the negative effect on productivity.
• Lower surface tension. Lower surface tension in chemical baths leads to fewer drops forming. Chromium baths currently have a surface tension of 35 dynes per centimeter. As a comparison, water has a surface tension of 72 dynes per centimeter. Lowering surface tension further would lead to reduced airborne hexavalent chromium levels.
• Fume suppressants. Fume suppressants create a physical barrier between the chemical bath and the air, which prevents vaporization. Some suppressants, however, may cause pitting or other metal damage, and therefore their use is not always possible.
• Improvement of local exhaust ventilation (LEV) capture efficiency. The majority of electroplating facilities are not air-conditioned. As a result, doors are kept open to let in cool air, but this causes air currents that prevent the LEVs from performing efficiently. The use of fans has a similar effect. Industry is researching how to minimize these air currents so that LEVs can perform as designed. Such methods may include the use of partitions to degrade air current flow, or checklists that may include location and positioning of cross drafts, fans, doors, windows, partitions and process equipment that Companies can use to audit their workplaces in order to improve their capture efficiency.
• Eductors. Many chemical baths are currently mixed via air agitation: Air pipes bubble air into the tank to keep the chemicals mixed and to prevent them from settling. An adverse effect of this agitation is that air bubbles escape at the surface of the tank, resulting in some chromium vaporization. By using eductors (horn-shaped nozzles) in tanks, the chemicals flow from a pump to create solution movement below the surface without the use of air bubbles, and the amount of chromium vaporization can be significantly reduced.
• Liquid Chromium. Dry hexavalent chromium flakes are occasionally added to tanks, which can generate airborne particulates of hexavalent chromium. Adding liquid chromium at or near the surface of a tank would lower airborne chromium levels and reduce splashing from tanks.
• Hydration of flakes before addition. To add liquid chromium to tanks, the dry flakes must be hydrated. Whether this process is performed by chemical suppliers that provide plating solutions to metal finishing companies or by metal finishing companies that have the necessary experience and equipment, appropriate work practices such as mixing techniques must be implemented to minimize the potential airborne levels of hexavalent chromium.
• Better housekeeping. Chrome dust that comes off products that are polished or grinded is actually elemental chromium, not hexavalent chromium, so polishing and grinding contribute little to airborne hexavalent chromium levels. However, Companies should use good housekeeping practices, including wet mopping, and wet wipedowns, to reduce the amount of dust present.
• Improvement and maintenance of existing LEVs. Companies may repair and maintain their current LEVs. Because the final rule indicates that at least 75 percent of the industry is in compliance with the PEL with LEVs working at 40% of capacity, increasing LEV function can materially affect compliance.
• Other methods. Companies are constantly determining best work practices and technological controls through laboratory research and practical experience. Companies will implement other engineering and work practice controls as necessary and as practicable to reduce potential hexavalent chromium workplace exposures.
Some well-known and relatively few, discrete tasks related to metal finishing activities result in potentially higher workplace exposures of hexavalent chromium. Where the applicable PEL for hexavalent chromium is exceeded, respirators shall be worn to conduct the following activities:
(1) Hexavalent chromium chemical additions. In order to have the metal deposited onto the part, hexavalent chromium must be added to the plating tank periodically. This is a discrete activity that involves the addition of either a dry flake of hexavalent chromium chemicals or a liquid solution of hexavalent chromium into the plating tank. Respirators shall be worn during the period it takes to add the hexavalent chromium chemical to the tank.
(2) Hexavalent chromium preparation and mixing. Different mixtures of hexavalent chromium chemicals are needed for different types of chromium plating processes. For example, hard chromium plating can require higher concentrations of hexavalent chromium because a thicker coating and longer plating process may be needed for the critical product quality and performance. Similarly, different types of decorative chromium plating processes may need different levels of hexavalent chromium and other chemicals such as catalysts. These mixtures can be in the form of dry flakes or liquid solutions. All of these different hexavalent chromium chemical mixtures are generally prepared by metal finishing suppliers and distributors. Some metal finishing companies may also prepare hexavalent chromium solutions from the dry flakes prior to addition to the plating tanks. Respirators shall be worn during the period it takes to prepare these hexavalent chromium mixtures and solutions whether the activity is conducted at a chemical supplier or a metal finishing company.
(3) Hexavalent chromium tank cleaning. Occasionally, the tanks used for chromium plating may need to be emptied and cleaned. This process would involve the draining of the solution and then the removal of any residues in the tank. Workers cleaning out these tanks may have to enter the tank or reach into it to remove the residues. Respirators (as well as other appropriate PPE) shall be worn during the period it takes to clean the tanks and prepare them for use again.
(4) Hexavalent chromium painting operations. Some metal finishing operations apply paints with higher concentrations of hexavalent chromium to a line of parts, particularly for aerospace applications when a high degree of corrosion protection is needed for critical product performance. Paints are generally applied in such operations with some type of spray mechanism or similar dispersion practice. In some instances, it may be difficult to keep workplace exposures below the PEL for such paint spraying activities. Respirators shall be worn during such spray painting operations.
§ 1910.1027 - Cadmium.
(a) Scope. This standard applies to all occupational exposures to cadmium and cadmium compounds, in all forms, and in all industries covered by the Occupational Safety and Health Act, except the construction-related industries, which are covered under 29 CFR 1926.63.
(b) Definitions. Action level (AL) is defined as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Authorized person means any person authorized by the employer and required by work duties to be present in regulated areas or any person authorized by the OSH Act or regulations issued under it to be in regulated areas.
Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee.
Employee exposure and similar language referring to the air cadmium level to which an employee is exposed means the exposure to airborne cadmium that would occur if the employee were not using respiratory protective equipment.
Final medical determination is the written medical opinion of the employee's health status by the examining physician under paragraphs (l)(3)-(12) of this section or, if multiple physician review under paragraph (l)(13) of this section or the alternative physician determination under paragraph (l)(14) of this section is invoked, it is the final, written medical finding, recommendation or determination that emerges from that process.
High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least 99.97 percent of mono-dispersed particles of 0.3 micrometers in diameter.
Regulated area means an area demarcated by the employer where an employee's exposure to airborne concentrations of cadmium exceeds, or can reasonably be expected to exceed the permissible exposure limit (PEL).
This section means this cadmium standard.
(c) Permissible Exposure Limit (PEL). The employer shall assure that no employee is exposed to an airborne concentration of cadmium in excess of five micrograms per cubic meter of air (5 µg/m
(d) Exposure monitoring—(1) General. (i) Each employer who has a workplace or work operation covered by this section shall determine if any employee may be exposed to cadmium at or above the action level.
(ii) Determinations of employee exposure shall be made from breathing zone air samples that reflect the monitored employee's regular, daily 8-hour TWA exposure to cadmium.
(iii) Eight-hour TWA exposures shall be determined for each employee on the basis of one or more personal breathing zone air samples reflecting full shift exposure on each shift, for each job classification, in each work area. Where several employees perform the same job tasks, in the same job classification, on the same shift, in the same work area, and the length, duration, and level of cadmium exposures are similar, an employer may sample a representative fraction of the employees instead of all employees in order to meet this requirement. In representative sampling, the employer shall sample the employee(s) expected to have the highest cadmium exposures.
(2) Specific. (i) Initial monitoring. Except as provided for in paragraphs (d)(2)(ii) and (d)(2)(iii) of this section, the employer shall monitor employee exposures and shall base initial determinations on the monitoring results.
(ii) Where the employer has monitored after September 14, 1991, under conditions that in all important aspects closely resemble those currently prevailing and where that monitoring satisfies all other requirements of this section, including the accuracy and confidence levels of paragraph (d)(6) of this section, the employer may rely on such earlier monitoring results to satisfy the requirements of paragraph (d)(2)(i) of this section.
(iii) Where the employer has objective data, as defined in paragraph (n)(2) of this section, demonstrating that employee exposure to cadmium will not exceed the action level under the expected conditions of processing, use, or handling, the employer may rely upon such data instead of implementing initial monitoring.
(3) Monitoring Frequency (periodic monitoring). (i) If the initial monitoring or periodic monitoring reveals employee exposures to be at or above the action level, the employer shall monitor at a frequency and pattern needed to represent the levels of exposure of employees and where exposures are above the PEL to assure the adequacy of respiratory selection and the effectiveness of engineering and work practice controls. However, such exposure monitoring shall be performed at least every six months. The employer, at a minimum, shall continue these semi-annual measurements unless and until the conditions set out in paragraph (d)(3)(ii) of this section are met.
(ii) If the initial monitoring or the periodic monitoring indicates that employee exposures are below the action level and that result is confirmed by the results of another monitoring taken at least seven days later, the employer may discontinue the monitoring for those employees whose exposures are represented by such monitoring.
(4) Additional Monitoring. The employer also shall institute the exposure monitoring required under paragraphs (d)(2)(i) and (d)(3) of this section whenever there has been a change in the raw materials, equipment, personnel, work practices, or finished products that may result in additional employees being exposed to cadmium at or above the action level or in employees already exposed to cadmium at or above the action level being exposed above the PEL, or whenever the employer has any reason to suspect that any other change might result in such further exposure.
(5) Employee Notification of Monitoring Results. (i) The employer must, within 15 working days after the receipt of the results of any monitoring performed under this section, notify each affected employee of these results either individually in writing or by posting the results in an appropriate location that is accessible to employees.
(ii) Wherever monitoring results indicate that employee exposure exceeds the PEL, the employer shall include in the written notice a statement that the PEL has been exceeded and a description of the corrective action being taken by the employer to reduce employee exposure to or below the PEL.
(6) Accuracy of measurement. The employer shall use a method of monitoring and analysis that has an accuracy of not less than plus or minus 25 percent (±25%), with a confidence level of 95 percent, for airborne concentrations of cadmium at or above the action level, the permissible exposure limit (PEL), and the separate engineering control air limit (SECAL).
(e) Regulated areas—(1) Establishment. The employer shall establish a regulated area wherever an employee's exposure to airborne concentrations of cadmium is, or can reasonably be expected to be in excess of the permissible exposure limit (PEL).
(2) Demarcation. Regulated areas shall be demarcated from the rest of the workplace in any manner that adequately establishes and alerts employees of the boundaries of the regulated area.
(3) Access. Access to regulated areas shall be limited to authorized persons.
(4) Provision of respirators. Each person entering a regulated area shall be supplied with and required to use a respirator, selected in accordance with paragraph (g)(2) of this section.
(5) Prohibited activities. The employer shall assure that employees do not eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas, carry the products associated with these activities into regulated areas, or store such products in those areas.
(f) Methods of compliance—(1) Compliance hierarchy. (i) Except as specified in paragraphs (f)(1) (ii), (iii) and (iv) of this section the employer shall implement engineering and work practice controls to reduce and maintain employee exposure to cadmium at or below the PEL, except to the extent that the employer can demonstrate that such controls are not feasible.
(ii) Except as specified in paragraphs (f)(1) (iii) and (iv) of this section, in industries where a separate engineering control air limit (SECAL) has been specified for particular processes (See Table 1 in this paragraph (f)(1)(ii)), the employer shall implement engineering and work practice controls to reduce and maintain employee exposure at or below the SECAL, except to the extent that the employer can demonstrate that such controls are not feasible.
Table I—Separate Engineering Control Airborne Limits (SECALs) for Processes in Selected Industries
Industry | Process | SECAL (µg/m 3) |
---|---|---|
Nickel cadmium battery | Plate making, plate preparation | 50 |
All other processes | 15 | |
Zinc/Cadmium refining* | Cadmium refining, casting, melting, oxide production, sinter plant | 50 |
Pigment manufacture | Calcine, crushing, milling, blending | 50 |
All other processes | 15 | |
Stabilizers* | Cadmium oxide charging, crushing, drying, blending | 50 |
Lead smelting* | Sinter plant, blast furnace, baghouse, yard area | 50 |
Plating* | Mechanical plating | 15 |
*Processes in these industries that are not specified in this table must achieve the PEL using engineering controls and work practices as required in f(1)(i).
(iii) The requirement to implement engineering and work practice controls to achieve the PEL or, where applicable, the SECAL does not apply where the employer demonstrates the following:
(A) The employee is only intermittently exposed; and
(B) The employee is not exposed above the PEL on 30 or more days per year (12 consecutive months).
(iv) Wherever engineering and work practice controls are required and are not sufficient to reduce employee exposure to or below the PEL or, where applicable, the SECAL, the employer nonetheless shall implement such controls to reduce exposures to the lowest levels achievable. The employer shall supplement such controls with respiratory protection that complies with the requirements of paragraph (g) of this section and the PEL.
(v) The employer shall not use employee rotation as a method of compliance.
(2) Compliance program. (i) Where the PEL is exceeded, the employer shall establish and implement a written compliance program to reduce employee exposure to or below the PEL by means of engineering and work practice controls, as required by paragraph (f)(1) of this section. To the extent that engineering and work practice controls cannot reduce exposures to or below the PEL, the employer shall include in the written compliance program the use of appropriate respiratory protection to achieve compliance with the PEL.
(ii) Written compliance programs shall include at least the following:
(A) A description of each operation in which cadmium is emitted; e.g., machinery used, material processed, controls in place, crew size, employee job responsibilities, operating procedures, and maintenance practices;
(B) A description of the specific means that will be employed to achieve compliance, including engineering plans and studies used to determine methods selected for controlling exposure to cadmium, as well as, where necessary, the use of appropriate respiratory protection to achieve the PEL;
(C) A report of the technology considered in meeting the PEL;
(D) Air monitoring data that document the sources of cadmium emissions;
(E) A detailed schedule for implementation of the program, including documentation such as copies of purchase orders for equipment, construction contracts, etc.;
(F) A work practice program that includes items required under paragraphs (h), (i), and (j) of this section;
(G) A written plan for emergency situations, as specified in paragraph (h) of this section; and
(H) Other relevant information.
(iii) The written compliance programs shall be reviewed and updated at least annually, or more often if necessary, to reflect significant changes in the employer's compliance status.
(iv) Written compliance programs shall be provided upon request for examination and copying to affected employees, designated employee representatives as well as to the Assistant Secretary, and the Director.
(3) Mechanical ventilation. (i) When ventilation is used to control exposure, measurements that demonstrate the effectiveness of the system in controlling exposure, such as capture velocity, duct velocity, or static pressure shall be made as necessary to maintain its effectiveness.
(ii) Measurements of the system's effectiveness in controlling exposure shall be made as necessary within five working days of any change in production, process, or control that might result in a significant increase in employee exposure to cadmium.
(iii) Recirculation of air. If air from exhaust ventilation is recirculated into the workplace, the system shall have a high efficiency filter and be monitored to assure effectiveness.
(iv) Procedures shall be developed and implemented to minimize employee exposure to cadmium when maintenance of ventilation systems and changing of filters is being conducted.
(g) Respiratory protection—(1) General. For employees who use respirators required by this section, the employer must provide each employee an appropriate respirator that complies with the requirements of this paragraph. Respirators must be used during:
(i) Periods necessary to install or implement feasible engineering and work-practice controls when employee exposure levels exceed the PEL.
(ii) Maintenance and repair activities, and brief or intermittent operations, for which employee exposures exceed the PEL and engineering and work-practice controls are not feasible or are not required.
(iii) Activities in regulated areas specified in paragraph (e) of this section.
(iv) Work operations for which the employer has implemented all feasible engineering and work-practice controls and such controls are not sufficient to reduce employee exposures to or below the PEL.
(v) Work operations for which an employee is exposed to cadmium at or above the action level, and the employee requests a respirator.
(vi) Work operations for which an employee is exposed to cadmium above the PEL and engineering controls are not required by paragraph (f)(1)(ii) of this section.
(vii) Emergencies.
(2) Respirator program. (i) The employer must implement a respiratory protection program in accordance with § 1910.134(b) through (d) (except (d)(1)(iii)), and (f) through (m), which covers each employee required by this section to use a respirator.
(ii) No employees must use a respirator if, based on their most recent medical examination, the examining physician determines that they will be unable to continue to function normally while using a respirator. If the physician determines that the employee must be limited in, or removed from, their current job because of their inability to use a respirator, the limitation or removal must be in accordance with paragraphs (l) (11) and (12) of this section.
(iii) If an employee has breathing difficulty during fit testing or respirator use, the employer must provide the employee with a medical examination in accordance with paragraph (l)(6)(ii) of this section to determine if the employee can use a respirator while performing the required duties.
(3) Respirator selection. (i) Employers must:
(A) Select, and provide to employees, the appropriate respirators specified in paragraph (d)(3)(i)(A) of 29 CFR 1910.134.
(B) Provide employees with full facepiece respirators when they experience eye irritation.
(C) Provide HEPA filters for powered and non-powered air-purifying respirators.
(ii) The employer must provide an employee with a powered air-purifying respirator instead of a negative-pressure respirator when an employee who is entitled to a respirator chooses to use this type of respirator and such a respirator provides adequate protection to the employee.
(h) Emergency situations. The employer shall develop and implement a written plan for dealing with emergency situations involving substantial releases of airborne cadmium. The plan shall include provisions for the use of appropriate respirators and personal protective equipment. In addition, employees not essential to correcting the emergency situation shall be restricted from the area and normal operations halted in that area until the emergency is abated.
(i) Protective work clothing and equipment—(1) Provision and use. If an employee is exposed to airborne cadmium above the PEL or where skin or eye irritation is associated with cadmium exposure at any level, the employer shall provide at no cost to the employee, and assure that the employee uses, appropriate protective work clothing and equipment that prevents contamination of the employee and the employee's garments. Protective work clothing and equipment includes, but is not limited to:
(i) Coveralls or similar full-body work clothing;
(ii) Gloves, head coverings, and boots or foot coverings; and
(iii) Face shields, vented goggles, or other appropriate protective equipment that complies with 29 CFR 1910.133.
(2) Removal and storage. (i) The employer shall assure that employees remove all protective clothing and equipment contaminated with cadmium at the completion of the work shift and do so only in change rooms provided in accordance with paragraph (j)(1) of this section.
(ii) The employer shall assure that no employee takes cadmium-contaminated protective clothing or equipment from the workplace, except for employees authorized to do so for purposes of laundering, cleaning, maintaining, or disposing of cadmium contaminated protective clothing and equipment at an appropriate location or facility away from the workplace.
(iii) The employer shall assure that contaminated protective clothing and equipment, when removed for laundering, cleaning, maintenance, or disposal, is placed and stored in sealed, impermeable bags or other closed, impermeable containers that are designed to prevent dispersion of cadmium dust.
(iv) The employer shall assure that bags or containers of contaminated protective clothing and equipment that are to be taken out of the change rooms or the workplace for laundering, cleaning, maintenance or disposal shall bear labels in accordance with paragraph (m)(3) of this section.
(3) Cleaning, replacement, and disposal. (i) The employer shall provide the protective clothing and equipment required by paragraph (i)(1) of this section in a clean and dry condition as often as necessary to maintain its effectiveness, but in any event at least weekly. The employer is responsible for cleaning and laundering the protective clothing and equipment required by this paragraph to maintain its effectiveness and is also responsible for disposing of such clothing and equipment.
(ii) The employer also is responsible for repairing or replacing required protective clothing and equipment as needed to maintain its effectiveness. When rips or tears are detected while an employee is working they shall be immediately mended, or the worksuit shall be immediately replaced.
(iii) The employer shall prohibit the removal of cadmium from protective clothing and equipment by blowing, shaking, or any other means that disperses cadmium into the air.
(iv) The employer shall assure that any laundering of contaminated clothing or cleaning of contaminated equipment in the workplace is done in a manner that prevents the release of airborne cadmium in excess of the permissible exposure limit prescribed in paragraph (c) of this section.
(v) The employer shall inform any person who launders or cleans protective clothing or equipment contaminated with cadmium of the potentially harmful effects of exposure to cadmium and that the clothing and equipment should be laundered or cleaned in a manner to effectively prevent the release of airborne cadmium in excess of the PEL.
(j) Hygiene areas and practices—(1) General. For employees whose airborne exposure to cadmium is above the PEL, the employer shall provide clean change rooms, handwashing facilities, showers, and lunchroom facilities that comply with 29 CFR 1910.141.
(2) Change rooms. The employer shall assure that change rooms are equipped with separate storage facilities for street clothes and for protective clothing and equipment, which are designed to prevent dispersion of cadmium and contamination of the employee's street clothes.
(3) Showers and handwashing facilities. (i) The employer shall assure that employees who are exposed to cadmium above the PEL shower during the end of the work shift.
(ii) The employer shall assure that employees whose airborne exposure to cadmium is above the PEL wash their hands and faces prior to eating, drinking, smoking, chewing tobacco or gum, or applying cosmetics.
(4) Lunchroom facilities. (i) The employer shall assure that the lunchroom facilities are readily accessible to employees, that tables for eating are maintained free of cadmium, and that no employee in a lunchroom facility is exposed at any time to cadmium at or above a concentration of 2.5 µg/m
(ii) The employer shall assure that employees do not enter lunchroom facilities with protective work clothing or equipment unless surface cadmium has been removed from the clothing and equipment by HEPA vacuuming or some other method that removes cadmium dust without dispersing it.
(k) Housekeeping. (1) All surfaces shall be maintained as free as practicable of accumulations of cadmium.
(2) All spills and sudden releases of material containing cadmium shall be cleaned up as soon as possible.
(3) Surfaces contaminated with cadmium shall, wherever possible, be cleaned by vacuuming or other methods that minimize the likelihood of cadmium becoming airborne.
(4) HEPA-filtered vacuuming equipment or equally effective filtration methods shall be used for vacuuming. The equipment shall be used and emptied in a manner that minimizes the reentry of cadmium into the workplace.
(5) Shoveling, dry or wet sweeping, and brushing may be used only where vacuuming or other methods that minimize the likelihood of cadmium becoming airborne have been tried and found not to be effective.
(6) Compressed air shall not be used to remove cadmium from any surface unless the compressed air is used in conjunction with a ventilation system designed to capture the dust cloud created by the compressed air.
(7) Waste, scrap, debris, bags, containers, personal protective equipment, and clothing contaminated with cadmium and consigned for disposal shall be collected and disposed of in sealed impermeable bags or other closed, impermeable containers. These bags and containers shall be labeled in accordance with paragraph (m) of this section.
(l) Medical surveillance—(1) General—(i) Scope. (A) Currently exposed—The employer shall institute a medical surveillance program for all employees who are or may be exposed to cadmium at or above the action level unless the employer demonstrates that the employee is not, and will not be, exposed at or above the action level on 30 or more days per year (twelve consecutive months); and,
(B) Previously exposed—The employer shall also institute a medical surveillance program for all employees who prior to the effective date of this section might previously have been exposed to cadmium at or above the action level by the employer, unless the employer demonstrates that the employee did not prior to the effective date of this section work for the employer in jobs with exposure to cadmium for an aggregated total of more than 60 months.
(ii) To determine an employee's fitness for using a respirator, the employer shall provide the limited medical examination specified in paragraph (l)(6) of this section.
(iii) The employer shall assure that all medical examinations and procedures required by this standard are performed by or under the supervision of a licensed physician, who has read and is familiar with the health effects section of appendix A to this section, the regulatory text of this section, the protocol for sample handling and laboratory selection in appendix F to this section, and the questionnaire of appendix D to this section. These examinations and procedures shall be provided without cost to the employee and at a time and place that is reasonable and convenient to employees.
(iv) The employer shall assure that the collecting and handling of biological samples of cadmium in urine (CdU), cadmium in blood (CdB), and beta-2 microglobulin in urine (β
(2) Initial examination. (i) The employer shall provide an initial (preplacement) examination to all employees covered by the medical surveillance program required in paragraph (l)(1)(i) of this section. The examination shall be provided to those employees within 30 days after initial assignment to a job with exposure to cadmium or no later than 90 days after the effective date of this section, whichever date is later.
(ii) The initial (preplacement) medical examination shall include:
(A) A detailed medical and work history, with emphasis on: Past, present, and anticipated future exposure to cadmium; any history of renal, cardiovascular, respiratory, hematopoietic, reproductive, and/or musculo-skeletal system dysfunction; current usage of medication with potential nephrotoxic side-effects; and smoking history and current status; and
(B) Biological monitoring that includes the following tests:
(1) Cadmium in urine (CdU), standardized to grams of creatinine (g/Cr);
(2) Beta-2 microglobulin in urine (β
(3) Cadmium in blood (CdB), standardized to liters of whole blood (lwb).
(iii) Recent Examination: An initial examination is not required to be provided if adequate records show that the employee has been examined in accordance with the requirements of paragraph (l)(2)(ii) of this section within the past 12 months. In that case, such records shall be maintained as part of the employee's medical record and the prior exam shall be treated as if it were an initial examination for the purposes of paragraphs (l)(3) and (4) of this section.
(3) Actions triggered by initial biological monitoring: (i) If the results of the initial biological monitoring tests show the employee's CdU level to be at or below 3 µg/g Cr, β
(A) For currently exposed employees, who are subject to medical surveillance under paragraph (l)(1)(i)(A) of this section, the employer shall provide the minimum level of periodic medical surveillance in accordance with the requirements in paragraph (l)(4)(i) of this section; and
(B) For previously exposed employees, who are subject to medical surveillance under paragraph (l)(1)(i)(B) of this section, the employer shall provide biological monitoring for CdU, β
(ii) For all employees who are subject to medical surveillance under paragraph (l)(1)(i) of this section, if the results of the initial biological monitoring tests show the level of CdU to exceed 3 µg/g Cr, the level of β
(A) Within two weeks after receipt of biological monitoring results, reassess the employee's occupational exposure to cadmium as follows:
(1) Reassess the employee's work practices and personal hygiene;
(2) Reevaluate the employee's respirator use, if any, and the respirator program;
(3) Review the hygiene facilities;
(4) Reevaluate the maintenance and effectiveness of the relevant engineering controls;
(5) Assess the employee's smoking history and status;
(B) Within 30 days after the exposure reassessment, specified in paragraph (l)(3)(ii)(A) of this section, take reasonable steps to correct any deficiencies found in the reassessment that may be responsible for the employee's excess exposure to cadmium; and,
(C) Within 90 days after receipt of biological monitoring results, provide a full medical examination to the employee in accordance with the requirements of paragraph (l)(4)(ii) of this section. After completing the medical examination, the examining physician shall determine in a written medical opinion whether to medically remove the employee. If the physician determines that medical removal is not necessary, then until the employee's CdU level falls to or below 3 µg/g Cr, β
(1) Provide biological monitoring in accordance with paragraph (l)(2)(ii)(B) of this section on a semiannual basis; and
(2) Provide annual medical examinations in accordance with paragraph (l)(4)(ii) of this section.
(iii) For all employees who are subject to medical surveillance under paragraph (l)(1)(i) of this section, if the results of the initial biological monitoring tests show the level of CdU to be in excess of 15 µg/g Cr, or the level of CdB to be in excess of 15 µg/lwb, or the level of β
(A) Periodically reassess the employee's occupational exposure to cadmium;
(B) Provide biological monitoring in accordance with paragraph (l)(2)(ii)(B) of this section on a quarterly basis; and
(C) Provide semiannual medical examinations in accordance with paragraph (l)(4)(ii) of this section.
(iv) For all employees to whom medical surveillance is provided, beginning on January 1, 1999, and in lieu of paragraphs (l)(3)(i)-(iii) of this section:
(A) If the results of the initial biological monitoring tests show the employee's CdU level to be at or below 3 µg/g Cr, β
(B) If the results of the initial biological monitoring tests show the level of CdU to exceed 3 µg/g Cr, the level of β
(C) If the results of the initial biological monitoring tests show the level of CdU to be in excess of 7 µg/g Cr, or the level of CdB to be in excess of 10 µg/lwb, or the level of β
(4) Periodic medical surveillance. (i) For each employee who is covered under paragraph (l)(1)(i)(A) of this section, the employer shall provide at least the minimum level of periodic medical surveillance, which consists of periodic medical examinations and periodic biological monitoring. A periodic medical examination shall be provided within one year after the initial examination required by paragraph (l)(2) of this section and thereafter at least biennially. Biological sampling shall be provided at least annually, either as part of a periodic medical examination or separately as periodic biological monitoring.
(ii) The periodic medical examination shall include:
(A) A detailed medical and work history, or update thereof, with emphasis on: Past, present and anticipated future exposure to cadmium; smoking history and current status; reproductive history; current use of medications with potential nephrotoxic side-effects; any history of renal, cardiovascular, respiratory, hematopoietic, and/or musculo-skeletal system dysfunction; and as part of the medical and work history, for employees who wear respirators, questions 3-11 and 25-32 in appendix D to this section;
(B) A complete physical examination with emphasis on: Blood pressure, the respiratory system, and the urinary system;
(C) A 14 inch by 17 inch or other reasonably-sized standard film or digital posterior-anterior chest X-ray (after the initial X-ray, the frequency of chest X-rays is to be determined by the examining physician);
(D) Pulmonary function tests, including forced vital capacity (FVC) and forced expiratory volume at 1 second (FEV1);
(E) Biological monitoring, as required in paragraph (l)(2)(ii)(B) of this section;
(F) Blood analysis, in addition to the analysis required under paragraph (l)(2)(ii)(B) of this section, including blood urea nitrogen, complete blood count, and serum creatinine;
(G) Urinalysis, in addition to the analysis required under paragraph (l)(2)(ii)(B) of this section, including the determination of albumin, glucose, and total and low molecular weight proteins;
(H) For males over 40 years old, prostate palpation, or other at least as effective diagnostic test(s); and
(I) Any additional tests deemed appropriate by the examining physician.
(iii) Periodic biological monitoring shall be provided in accordance with paragraph (l)(2)(ii)(B) of this section.
(iv) If the results of periodic biological monitoring or the results of biological monitoring performed as part of the periodic medical examination show the level of the employee's CdU, β
(v) For previously exposed employees under paragraph (l)(1)(i)(B) of this section:
(A) If the employee's levels of CdU did not exceed 3 µg/g Cr, CdB did not exceed 5 µg/lwb, and β
(B) If the initial biological monitoring results for CdU, CdB, or β
(C) However, if the results of the follow-up tests specified in paragraph (l)(4)(v)(A) or (B) of this section indicate that the level of the employee's CdU, β
(vi) A routine, biennial medical examination is not required to be provided in accordance with paragraphs (l)(3)(i) and (l)(4) of this section if adequate medical records show that the employee has been examined in accordance with the requirements of paragraph (l)(4)(ii) of this section within the past 12 months. In that case, such records shall be maintained by the employer as part of the employee's medical record, and the next routine, periodic medical examination shall be made available to the employee within two years of the previous examination.
(5) Actions triggered by medical examinations. (i) If the results of a medical examination carried out in accordance with this section indicate any laboratory or clinical finding consistent with cadmium toxicity that does not require employer action under paragraph (l)(2), (3) or (4) of this section, the employer, within 30 days, shall reassess the employee's occupational exposure to cadmium and take the following corrective action until the physician determines they are no longer necessary:
(A) Periodically reassess: The employee's work practices and personal hygiene; the employee's respirator use, if any; the employee's smoking history and status; the respiratory protection program; the hygiene facilities; and the maintenance and effectiveness of the relevant engineering controls;
(B) Within 30 days after the reassessment, take all reasonable steps to correct the deficiencies found in the reassessment that may be responsible for the employee's excess exposure to cadmium;
(C) Provide semiannual medical reexaminations to evaluate the abnormal clinical sign(s) of cadmium toxicity until the results are normal or the employee is medically removed; and
(D) Where the results of tests for total proteins in urine are abnormal, provide a more detailed medical evaluation of the toxic effects of cadmium on the employee's renal system.
(6) Examination for respirator use. (i) To determine an employee's fitness for respirator use, the employer shall provide a medical examination that includes the elements specified in paragraph (l)(6)(i)(A)-(D) of this section. This examination shall be provided prior to the employee's being assigned to a job that requires the use of a respirator or no later than 90 days after this section goes into effect, whichever date is later, to any employee without a medical examination within the preceding 12 months that satisfies the requirements of this paragraph.
(A) A detailed medical and work history, or update thereof, with emphasis on: Past exposure to cadmium; smoking history and current status; any history of renal, cardiovascular, respiratory, hematopoietic, and/or musculoskeletal system dysfunction; a description of the job for which the respirator is required; and questions 3-11 and 25-32 in appendix D to this section;
(B) A blood pressure test;
(C) Biological monitoring of the employee's levels of CdU, CdB and β
(D) Any other test or procedure that the examining physician deems appropriate.
(ii) After reviewing all the information obtained from the medical examination required in paragraph (l)(6)(i) of this section, the physician shall determine whether the employee is fit to wear a respirator.
(iii) Whenever an employee has exhibited difficulty in breathing during a respirator fit test or during use of a respirator, the employer, as soon as possible, shall provide the employee with a periodic medical examination in accordance with paragraph (l)(4)(ii) of this section to determine the employee's fitness to wear a respirator.
(iv) Where the results of the examination required under paragraph (l)(6)(i), (ii), or (iii) of this section are abnormal, medical limitation or prohibition of respirator use shall be considered. If the employee is allowed to wear a respirator, the employee's ability to continue to do so shall be periodically evaluated by a physician.
(7) Emergency examinations. (i) In addition to the medical surveillance required in paragraphs (l)(2)-(6) of this section, the employer shall provide a medical examination as soon as possible to any employee who may have been acutely exposed to cadmium because of an emergency.
(ii) The examination shall include the requirements of paragraph (l)(4)(ii) of this section, with emphasis on the respiratory system, other organ systems considered appropriate by the examining physician, and symptoms of acute overexposure, as identified in paragraphs II (B)(1)-(2) and IV of appendix A to this section.
(8) Termination of employment examination. (i) At termination of employment, the employer shall provide a medical examination in accordance with paragraph (l)(4)(ii) of this section, including a chest X-ray, to any employee to whom at any prior time the employer was required to provide medical surveillance under paragraphs (l)(1)(i) or (l)(7) of this section. However, if the last examination satisfied the requirements of paragraph (l)(4)(ii) of this section and was less than six months prior to the date of termination, no further examination is required unless otherwise specified in paragraphs (l)(3) or (l)(5) of this section;
(ii) However, for employees covered by paragraph (l)(1)(i)(B) of this section, if the employer has discontinued all periodic medical surveillance under paragraph (l)(4)(v) of this section, no termination of employment medical examination is required.
(9) Information provided to the physician. The employer shall provide the following information to the examining physician:
(i) A copy of this standard and appendices;
(ii) A description of the affected employee's former, current, and anticipated duties as they relate to the employee's occupational exposure to cadmium;
(iii) The employee's former, current, and anticipated future levels of occupational exposure to cadmium;
(iv) A description of any personal protective equipment, including respirators, used or to be used by the employee, including when and for how long the employee has used that equipment; and
(v) relevant results of previous biological monitoring and medical examinations.
(10) Physician's written medical opinion. (i) The employer shall promptly obtain a written, medical opinion from the examining physician for each medical examination performed on each employee. This written opinion shall contain:
(A) The physician's diagnosis for the employee;
(B) The physician's opinion as to whether the employee has any detected medical condition(s) that would place the employee at increased risk of material impairment to health from further exposure to cadmium, including any indications of potential cadmium toxicity;
(C) The results of any biological or other testing or related evaluations that directly assess the employee's absorption of cadmium;
(D) Any recommended removal from, or limitation on the activities or duties of the employee or on the employee's use of personal protective equipment, such as respirators;
(E) A statement that the physician has clearly and carefully explained to the employee the results of the medical examination, including all biological monitoring results and any medical conditions related to cadmium exposure that require further evaluation or treatment, and any limitation on the employee's diet or use of medications.
(ii) The employer promptly shall obtain a copy of the results of any biological monitoring provided by an employer to an employee independently of a medical examination under paragraphs (l)(2) and (l)(4) of this section, and, in lieu of a written medical opinion, an explanation sheet explaining those results.
(iii) The employer shall instruct the physician not to reveal orally or in the written medical opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to cadmium.
(11) Medical Removal Protection (MRP)—(i) General. (A) The employer shall temporarily remove an employee from work where there is excess exposure to cadmium on each occasion that medical removal is required under paragraph (l)(3), (l)(4), or (l)(6) of this section and on each occasion that a physician determines in a written medical opinion that the employee should be removed from such exposure. The physician's determination may be based on biological monitoring results, inability to wear a respirator, evidence of illness, other signs or symptoms of cadmium-related dysfunction or disease, or any other reason deemed medically sufficient by the physician.
(B) The employer shall medically remove an employee in accordance with paragraph (l)(11) of this section regardless of whether at the time of removal a job is available into which the removed employee may be transferred.
(C) Whenever an employee is medically removed under paragraph (l)(11) of this section, the employer shall transfer the removed employee to a job where the exposure to cadmium is within the permissible levels specified in that paragraph as soon as one becomes available.
(D) For any employee who is medically removed under the provisions of paragraph (l)(11)(i) of this section, the employer shall provide follow-up biological monitoring in accordance with (l)(2)(ii)(B) of this section at least every three months and follow-up medical examinations semi-annually at least every six months until in a written medical opinion the examining physician determines that either the employee may be returned to his/her former job status as specified under paragraph (l)(11)(iv)-(v) of this section or the employee must be permanently removed from excess cadmium exposure.
(E) The employer may not return an employee who has been medically removed for any reason to his/her former job status until a physician determines in a written medical opinion that continued medical removal is no longer necessary to protect the employee's health.
(ii) Where an employee is found unfit to wear a respirator under paragraph (l)(6)(ii) of this section, the employer shall remove the employee from work where exposure to cadmium is above the PEL.
(iii) Where removal is based on any reason other than the employee's inability to wear a respirator, the employer shall remove the employee from work where exposure to cadmium is at or above the action level.
(iv) Except as specified in paragraph (l)(11)(v) of this section, no employee who was removed because his/her level of CdU, CdB and/or β
(v) However, when in the examining physician's opinion continued exposure to cadmium will not pose an increased risk to the employee's health and there are special circumstances that make continued medical removal an inappropriate remedy, the physician shall fully discuss these matters with the employee, and then in a written determination may return a worker to his/her former job status despite what would otherwise be unacceptably high biological monitoring results. Thereafter, the returned employee shall continue to be provided with medical surveillance as if he/she were still on medical removal until the employee's levels of CdU fall to or below 3 µg/g Cr, CdB falls to or below 5 µg/lwb, and β
(vi) Where an employer, although not required by paragraph (l)(11)(i)-(iii) of this section to do so, removes an employee from exposure to cadmium or otherwise places limitations on an employee due to the effects of cadmium exposure on the employee's medical condition, the employer shall provide the same medical removal protection benefits to that employee under paragraph (l)(12) of this section as would have been provided had the removal been required under paragraph (l)(11)(i)-(iii) of this section.
(12) Medical Removal Protection Benefits (MRPB). (i) The employer shall provide MRPB for up to a maximum of 18 months to an employee each time and while the employee is temporarily medically removed under paragraph (l)(11) of this section.
(ii) For purposes of this section, the requirement that the employer provide MRPB means that the employer shall maintain the total normal earnings, seniority, and all other employee rights and benefits of the removed employee, including the employee's right to his/her former job status, as if the employee had not been removed from the employee's job or otherwise medically limited.
(iii) Where, after 18 months on medical removal because of elevated biological monitoring results, the employee's monitoring results have not declined to a low enough level to permit the employee to be returned to his/her former job status:
(A) The employer shall make available to the employee a medical examination pursuant to this section in order to obtain a final medical determination as to whether the employee may be returned to his/her former job status or must be permanently removed from excess cadmium exposure; and
(B) The employer shall assure that the final medical determination indicates whether the employee may be returned to his/her former job status and what steps, if any, should be taken to protect the employee's health.
(iv) The employer may condition the provision of MRPB upon the employee's participation in medical surveillance provided in accordance with this section.
(13) Multiple physician review. (i) If the employer selects the initial physician to conduct any medical examination or consultation provided to an employee under this section, the employee may designate a second physician to:
(A) Review any findings, determinations, or recommendations of the initial physician; and
(B) Conduct such examinations, consultations, and laboratory tests as the second physician deems necessary to facilitate this review.
(ii) The employer shall promptly notify an employee of the right to seek a second medical opinion after each occasion that an initial physician provided by the employer conducts a medical examination or consultation pursuant to this section. The employer may condition its participation in, and payment for, multiple physician review upon the employee doing the following within fifteen (15) days after receipt of this notice, or receipt of the initial physician's written opinion, whichever is later:
(A) Informing the employer that he or she intends to seek a medical opinion; and
(B) Initiating steps to make an appointment with a second physician.
(iii) If the findings, determinations, or recommendations of the second physician differ from those of the initial physician, then the employer and the employee shall assure that efforts are made for the two physicians to resolve any disagreement.
(iv) If the two physicians have been unable to quickly resolve their disagreement, then the employer and the employee, through their respective physicians, shall designate a third physician to:
(A) Review any findings, determinations, or recommendations of the other two physicians; and
(B) Conduct such examinations, consultations, laboratory tests, and discussions with the other two physicians as the third physician deems necessary to resolve the disagreement among them.
(v) The employer shall act consistently with the findings, determinations, and recommendations of the third physician, unless the employer and the employee reach an agreement that is consistent with the recommendations of at least one of the other two physicians.
(14) Alternate physician determination. The employer and an employee or designated employee representative may agree upon the use of any alternate form of physician determination in lieu of the multiple physician review provided by paragraph (l)(13) of this section, so long as the alternative is expeditious and at least as protective of the employee.
(15) Information the employer must provide the employee. (i) The employer shall provide a copy of the physician's written medical opinion to the examined employee within two weeks after receipt thereof.
(ii) The employer shall provide the employee with a copy of the employee's biological monitoring results and an explanation sheet explaining the results within two weeks after receipt thereof.
(iii) Within 30 days after a request by an employee, the employer shall provide the employee with the information the employer is required to provide the examining physician under paragraph (l)(9) of this section.
(16) Reporting. In addition to other medical events that are required to be reported on the OSHA Form No. 200, the employer shall report any abnormal condition or disorder caused by occupational exposure to cadmium associated with employment as specified in Chapter (V)(E) of the Reporting Guidelines for Occupational Injuries and Illnesses.
(m) Communication of cadmium hazards to employees—(1) Hazard communication.—general. (i) Chemical manufacturers, importers, distributors and employers shall comply with all requirements of the Hazard Communication Standard (HCS) (§ 1910.1200) for cadmium.
(ii) In classifying the hazards of cadmium at least the following hazards are to be addressed: Cancer; lung effects; kidney effects; and acute toxicity effects.
(iii) Employers shall include cadmium in the hazard communication program established to comply with the HCS (§ 1910.1200). Employers shall ensure that each employee has access to labels on containers of cadmium and to safety data sheets, and is trained in accordance with the requirements of HCS and paragraph (m)(4) of this section.
(2) Warning signs. (i) Warning signs shall be provided and displayed in regulated areas. In addition, warning signs shall be posted at all approaches to regulated areas so that an employee may read the signs and take necessary protective steps before entering the area.
(ii) Warning signs required by paragraph (m)(2)(i) of this section shall bear the following legend:
(iii) The employer shall ensure that signs required by this paragraph (m)(2) are illuminated, cleaned, and maintained as necessary so that the legend is readily visible.
(iv) Prior to June 1, 2016, employers may use the following legend in lieu of that specified in paragraph (m)(2)(ii) of this section:
(3) Warning labels. (i) Shipping and storage containers containing cadmium or cadmium compounds shall bear appropriate warning labels, as specified in paragraph (m)(1) of this section.
(ii) The warning labels for containers of contaminated protective clothing, equipment, waste, scrap, or debris shall include at least the following information:
(iii) Prior to June 1, 2015, employers may include the following information on shipping and storage containers containing cadmium, cadmium compounds, or cadmium contaminated clothing, equipment, waste, scrap, or debris in lieu of the labeling requirements specified in paragraphs (m)(1)(i) and (m)(3)(ii) of this section:
(iv) Where feasible, installed cadmium products shall have a visible label or other indication that cadmium is present.
(4) Employee information and training. (i) The employer shall train each employee who is potentially exposed to cadmium in accordance with the requirements of this section. The employer shall institute a training program, ensure employee participation in the program, and maintain a record of the contents of such program.
(ii) Training shall be provided prior to or at the time of initial assignment to a job involving potential exposure to cadmium and at least annually thereafter.
(iii) The employer shall make the training program understandable to the employee and shall assure that each employee is informed of the following:
(A) The health hazards associated with cadmium exposure, with special attention to the information incorporated in appendix A to this section;
(B) The quantity, location, manner of use, release, and storage of cadmium in the workplace and the specific nature of operations that could result in exposure to cadmium, especially exposures above the PEL;
(C) The engineering controls and work practices associated with the employee's job assignment;
(D) The measures employees can take to protect themselves from exposure to cadmium, including modification of such habits as smoking and personal hygiene, and specific procedures the employer has implemented to protect employees from exposure to cadmium such as appropriate work practices, emergency procedures, and the provision of personal protective equipment;
(E) The purpose, proper selection, fitting, proper use, and limitations of respirators and protective clothing;
(F) The purpose and a description of the medical surveillance program required by paragraph (l) of this section;
(G) The contents of this section and its appendices; and
(H) The employee's rights of access to records under § 1910.1020(e) and (g).
(iv) Additional access to information and training program and materials.
(A) The employer shall make a copy of this section and its appendices readily available without cost to all affected employees and shall provide a copy if requested.
(B) The employer shall provide to the Assistant Secretary or the Director, upon request, all materials relating to the employee information and the training program.
(n) Recordkeeping—(1) Exposure monitoring. (i) The employer shall establish and keep an accurate record of all air monitoring for cadmium in the workplace.
(ii) This record shall include at least the following information:
(A) The monitoring date, duration, and results in terms of an 8-hour TWA of each sample taken;
(B) The name and job classification of the employees monitored and of all other employees whose exposures the monitoring is intended to represent;
(C) A description of the sampling and analytical methods used and evidence of their accuracy;
(D) The type of respiratory protective device, if any, worn by the monitored employee;
(E) A notation of any other conditions that might have affected the monitoring results.
(iii) The employer shall maintain this record for at least thirty (30) years, in accordance with 29 CFR 1910.1020.
(2) Objective data for exemption from requirement for initial monitoring. (i) For purposes of this section, objective data are information demonstrating that a particular product or material containing cadmium or a specific process, operation, or activity involving cadmium cannot release dust or fumes in concentrations at or above the action level even under the worst-case release conditions. Objective data can be obtained from an industry-wide study or from laboratory product test results from manufacturers of cadmium-containing products or materials. The data the employer uses from an industry-wide survey must be obtained under workplace conditions closely resembling the processes, types of material, control methods, work practices and environmental conditions in the employer's current operations.
(ii) The employer shall establish and maintain a record of the objective data for at least 30 years.
(3) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee covered by medical surveillance under paragraph (l)(1)(i) of this section.
(ii) The record shall include at least the following information about the employee:
(A) Name and description of the duties;
(B) A copy of the physician's written opinions and an explanation sheet for biological monitoring results;
(C) A copy of the medical history, and the results of any physical examination and all test results that are required to be provided by this section, including biological tests, X-rays, pulmonary function tests, etc., or that have been obtained to further evaluate any condition that might be related to cadmium exposure;
(D) The employee's medical symptoms that might be related to exposure to cadmium; and
(E) A copy of the information provided to the physician as required by paragraph (l)(9)(ii)-(v) of this section.
(iii) The employer shall assure that this record is maintained for the duration of employment plus thirty (30) years, in accordance with 29 CFR 1910.1020.
(4) Availability. (i) Except as otherwise provided for in this section, access to all records required to be maintained by paragraphs (n)(1) through (3) of this section shall be in accordance with the provisions of 29 CFR 1910.1020.
(ii) Within 15 days after a request, the employer shall make an employee's medical records required to be kept by paragraph (n)(3) of this section available for examination and copying to the subject employee, to designated representatives, to anyone having the specific written consent of the subject employee, and after the employee's death or incapacitation, to the employee's family members.
(o) Observation of monitoring—(1) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to cadmium.
(2) Observation procedures. When observation of monitoring requires entry into an area where the use of protective clothing or equipment is required, the employer shall provide the observer with that clothing and equipment and shall assure that the observer uses such clothing and equipment and complies with all other applicable safety and health procedures.
(p) Dates—(1) Effective date. This section shall become effective December 14, 1992.
(2) Start-up dates. All obligations of this section commence on the effective date except as follows:
(i) Exposure monitoring. Except for small businesses (nineteen (19) or fewer employees), initial monitoring required by paragraph (d)(2) of this section shall be completed as soon as possible and in any event no later than 60 days after the effective date of this standard. For small businesses, initial monitoring required by paragraph (d)(2) of this section shall be completed as soon as possible and in any event no later than 120 days after the effective date of this standard.
(ii) Regulated areas. Except for small business, defined under paragraph (p)(2)(i) of this section, regulated areas required to be established by paragraph (e) of this section shall be set up as soon as possible after the results of exposure monitoring are known and in any event no later than 90 days after the effective date of this section. For small businesses, regulated areas required to be established by paragraph (e) of this section shall be set up as soon as possible after the results of exposure monitoring are known and in any event no later than 150 days after the effective date of this section.
(iii) Respiratory protection. Except for small businesses, defined under paragraph (p)(2)(i) of this section, respiratory protection required by paragraph (g) of this section shall be provided as soon as possible and in any event no later than 90 days after the effective date of this section. For small businesses, respiratory protection required by paragraph (g) of this section shall be provided as soon as possible and in any event no later than 150 days after the effective date of this section.
(iv) Compliance program. Written compliance programs required by paragraph (f)(2) of this section shall be completed and available for inspection and copying as soon as possible and in any event no later than 1 year after the effective date of this section.
(v) Methods of compliance. The engineering controls required by paragraph (f)(1) of this section shall be implemented as soon as possible and in any event no later than two (2) years after the effective date of this section. Work practice controls shall be implemented as soon as possible. Work practice controls that are directly related to engineering controls to be implemented in accordance with the compliance plan shall be implemented as soon as possible after such engineering controls are implemented.
(vi) Hygiene and lunchroom facilities. (A) Handwashing facilities, permanent or temporary, shall be provided in accordance with 29 CFR 1910.141 (d)(1) and (2) as soon as possible and in any event no later than 60 days after the effective date of this section.
(B) Change rooms, showers, and lunchroom facilities shall be completed as soon as possible and in any event no later than 1 year after the effective date of this section.
(vii) Employee information and training. Except for small businesses, defined under paragraph (p)(2)(i) of this section, employee information and training required by paragraph (m)(4) of this section shall be provided as soon as possible and in any event no later than 90 days after the effective date of this standard. For small businesses, employee information and training required by paragraph (m)(4) of this standard shall be provided as soon as possible and in any event no later than 180 days after the effective date of this standard.
(viii) Medical surveillance. Except for small businesses, defined under paragraph (p)(2)(i) of this section, initial medical examinations required by paragraph (l) of this section shall be provided as soon as possible and in any event no later than 90 days after the effective date of this standard. For small businesses, initial medical examinations required by paragraph (l) of this section shall be provided as soon as possible and in any event no later than 180 days after the effective date of this standard.
(q) Appendices. Except where portions of appendices A, B, D, E, and F to this section are expressly incorporated in requirements of this section, these appendices are purely informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations.
A. Substance: Cadmium.
B. 8-Hour, Time-weighted-average, Permissible Exposure Limit (TWA PEL):
1. TWA PEL: Five micrograms of cadmium per cubic meter of air 5 µg/m
C. Appearance: Cadmium metal—soft, blue-white, malleable, lustrous metal or grayish-white powder. Some cadmium compounds may also appear as a brown, yellow, or red powdery substance.
A. Routes of Exposure. Cadmium can cause local skin or eye irritation. Cadmium can affect your health if you inhale it or if you swallow it.
B. Effects of Overexposure.
1. Short-term (acute) exposure: Cadmium is much more dangerous by inhalation than by ingestion. High exposures to cadmium that may be immediately dangerous to life or health occur in jobs where workers handle large quantities of cadmium dust or fume; heat cadmium-containing compounds or cadmium-coated surfaces; weld with cadmium solders or cut cadmium-containing materials such as bolts.
2. Severe exposure may occur before symptoms appear. Early symptoms may include mild irritation of the upper respiratory tract, a sensation of constriction of the throat, a metallic taste and/or a cough. A period of 1-10 hours may precede the onset of rapidly progressing shortness of breath, chest pain, and flu-like symptoms with weakness, fever, headache, chills, sweating and muscular pain. Acute pulmonary edema usually develops within 24 hours and reaches a maximum by three days. If death from asphyxia does not occur, symptoms may resolve within a week.
3. Long-term (chronic) exposure. Repeated or long-term exposure to cadmium, even at relatively low concentrations, may result in kidney damage and an increased risk of cancer of the lung and of the prostate.
C. Emergency First Aid Procedures.
1. Eye exposure: Direct contact may cause redness or pain. Wash eyes immediately with large amounts of water, lifting the upper and lower eyelids. Get medical attention immediately.
2. Skin exposure: Direct contact may result in irritation. Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water. Get medical attention immediately.
3. Ingestion: Ingestion may result in vomiting, abdominal pain, nausea, diarrhea, headache and sore throat. Treatment for symptoms must be administered by medical personnel. Under no circumstances should the employer allow any person whom he retains, employs, supervises or controls to engage in therapeutic chelation. Such treatment is likely to translocate cadmium from pulmonary or other tissue to renal tissue. Get medical attention immediately.
4. Inhalation: If large amounts of cadmium are inhaled, the exposed person must be moved to fresh air at once. If breathing has stopped, perform cardiopulmonary resuscitation. Administer oxygen if available. Keep the affected person warm and at rest. Get medical attention immediately.
5. Rescue: Move the affected person from the hazardous exposure. If the exposed person has been overcome, attempt rescue only after notifying at least one other person of the emergency and putting into effect established emergency procedures. Do not become a casualty yourself. Understand your emergency rescue procedures and know the location of the emergency equipment before the need arises.
A. Protective Clothing and Equipment.
1. Respirators: You may be required to wear a respirator for non-routine activities; in emergencies; while your employer is in the process of reducing cadmium exposures through engineering controls; and where engineering controls are not feasible. If respirators are worn in the future, they must have a joint Mine Safety and Health Administration (MSHA) and National Institute for Occupational Safety and Health (NIOSH) label of approval. Cadmium does not have a detectable odor except at levels well above the permissible exposure limits. If you can smell cadmium while wearing a respirator, proceed immediately to fresh air. If you experience difficulty breathing while wearing a respirator, tell your employer.
2. Protective Clothing: You may be required to wear impermeable clothing, gloves, foot gear, a face shield, or other appropriate protective clothing to prevent skin contact with cadmium. Where protective clothing is required, your employer must provide clean garments to you as necessary to assure that the clothing protects you adequately. The employer must replace or repair protective clothing that has become torn or otherwise damaged.
3. Eye Protection: You may be required to wear splash-proof or dust resistant goggles to prevent eye contact with cadmium.
B. Employer Requirements.
1. Medical: If you are exposed to cadmium at or above the action level, your employer is required to provide a medical examination, laboratory tests and a medical history according to the medical surveillance provisions under paragraph (1) of this standard. (See summary chart and tables in this appendix A.) These tests shall be provided without cost to you. In addition, if you are accidentally exposed to cadmium under conditions known or suspected to constitute toxic exposure to cadmium, your employer is required to make special tests available to you.
2. Access to Records: All medical records are kept strictly confidential. You or your representative are entitled to see the records of measurements of your exposure to cadmium. Your medical examination records can be furnished to your personal physician or designated representative upon request by you to your employer.
3. Observation of Monitoring: Your employer is required to perform measurements that are representative of your exposure to cadmium and you or your designated representative are entitled to observe the monitoring procedure. You are entitled to observe the steps taken in the measurement procedure, and to record the results obtained. When the monitoring procedure is taking place in an area where respirators or personal protective clothing and equipment are required to be worn, you or your representative must also be provided with, and must wear the protective clothing and equipment.
C. Employee Requirements—You will not be able to smoke, eat, drink, chew gum or tobacco, or apply cosmetics while working with cadmium in regulated areas. You will also not be able to carry or store tobacco products, gum, food, drinks or cosmetics in regulated areas because these products easily become contaminated with cadmium from the workplace and can therefore create another source of unnecessary cadmium exposure.
Some workers will have to change out of work clothes and shower at the end of the day, as part of their workday, in order to wash cadmium from skin and hair. Handwashing and cadmium-free eating facilities shall be provided by the employer and proper hygiene should always be performed before eating. It is also recommended that you do not smoke or use tobacco products, because among other things, they naturally contain cadmium. For further information, read the labeling on such products.
A. Introduction. The medical surveillance provisions of paragraph (1) generally are aimed at accomplishing three main interrelated purposes: First, identifying employees at higher risk of adverse health effects from excess, chronic exposure to cadmium; second, preventing cadmium-induced disease; and third, detecting and minimizing existing cadmium-induced disease. The core of medical surveillance in this standard is the early and periodic monitoring of the employee's biological indicators of: (a) Recent exposure to cadmium; (b) cadmium body burden; and (c) potential and actual kidney damage associated with exposure to cadmium.
The main adverse health effects associated with cadmium overexposure are lung cancer and kidney dysfunction. It is not yet known how to adequately biologically monitor human beings to specifically prevent cadmium-induced lung cancer. By contrast, the kidney can be monitored to provide prevention and early detection of cadmium-induced kidney damage. Since, for non-carcinogenic effects, the kidney is considered the primary target organ of chronic exposure to cadmium, the medical surveillance provisions of this standard effectively focus on cadmium-induced kidney disease. Within that focus, the aim, where possible, is to prevent the onset of such disease and, where necessary, to minimize such disease as may already exist. The by-products of successful prevention of kidney disease are anticipated to be the reduction and prevention of other cadmium-induced diseases.
B. Health Effects. The major health effects associated with cadmium overexposure are described below.
1. Kidney: The most prevalent non-malignant disease observed among workers chronically exposed to cadmium is kidney dysfunction. Initially, such dysfunction is manifested as proteinuria. The proteinuria associated with cadmium exposure is most commonly characterized by excretion of low-molecular weight proteins (15,000 to 40,000 MW) accompanied by loss of electrolytes, uric acid, calcium, amino acids, and phosphate. The compounds commonly excreted include: beta-2-microglobulin (β
It has also been observed that exposure to cadmium may lead to urinary excretion of high-molecular weight proteins such as albumin, immunoglobulin G, and glycoproteins (Ex. 29). Excretion of high-molecular weight proteins is typically indicative of damage to the glomeruli of the kidney. Bernard et al., (1979) suggest that damage to the glomeruli and damage to the proximal tubules of the kidney may both be linked to cadmium exposure but they may occur independently of each other.
Several studies indicate that the onset of low-molecular weight proteinuria is a sign of irreversible kidney damage (Friberg et al., 1974; Roels et al., 1982; Piscator 1984; Elinder et al., 1985; Smith et al., 1986). Above specific levels of β
Some studies indicate that such proteinuria may be progressive; levels of β
When cadmium exposure continues after the onset of proteinuria, chronic nephrotoxicity may occur (Friberg, Ex. 29). Uremia results from the inability of the glomerulus to adequately filter blood. This leads to severe disturbance of electrolyte concentrations and may lead to various clinical complications including kidney stones (L-140-50).
After prolonged exposure to cadmium, glomerular proteinuria, glucosuria, aminoaciduria, phosphaturia, and hypercalciuria may develop (Exs. 8-86, 4-28, 14-18). Phosphate, calcium, glucose, and amino acids are essential to life, and under normal conditions, their excretion should be regulated by the kidney. Once low molecular weight proteinuria has developed, these elements dissipate from the human body. Loss of glomerular function may also occur, manifested by decreased glomerular filtration rate and increased serum creatinine. Severe cadmium-induced renal damage may eventually develop into chronic renal failure and uremia (Ex. 55).
Studies in which animals are chronically exposed to cadmium confirm the renal effects observed in humans (Friberg et al., 1986). Animal studies also confirm problems with calcium metabolism and related skeletal effects which have been observed among humans exposed to cadmium in addition to the renal effects. Other effects commonly reported in chronic animal studies include anemia, changes in liver morphology, immunosuppression and hypertension. Some of these effects may be associated with co-factors. Hypertension, for example, appears to be associated with diet as well as cadmium exposure. Animals injected with cadmium have also shown testicular necrosis (Ex. 8-86B).
It is universally recognized that the best measures of cadmium exposures and its effects are measurements of cadmium in biological fluids, especially urine and blood. Of the two, CdU is conventionally used to determine body burden of cadmium in workers without kidney disease. CdB is conventionally used to monitor for recent exposure to cadmium. In addition, levels of CdU and CdB historically have been used to predict the percent of the population likely to develop kidney disease (Thun et al., Ex. L-140-50; WHO, Ex. 8-674; ACGIH, Exs. 8-667, 140-50).
The third biological parameter upon which OSHA relies for medical surveillance is Beta-2-microglobulin in urine (β
Excess β
Three issues confront the physicians in the use of β
Specific recommendations for ways to measure β
The primary sites for cadmium-associated cancer appear to be the lung and the prostate (L-140-50). Evidence for an association between cancer and cadmium exposure derives from both epidemiological studies and animal experiments. Mortality from prostate cancer associated with cadmium is slightly elevated in several industrial cohorts, but the number of cases is small and there is not clear dose-response relationship. More substantive evidence exists for lung cancer.
The major epidemiological study of lung cancer was conducted by Thun et al., (Ex. 4-68). Adequate data on cadmium exposures were available to allow evaluation of dose-response relationships between cadmium exposure and lung cancer. A statistically significant excess of lung cancer attributed to cadmium exposure was observed in this study even when confounding variables such as co-exposure to arsenic and smoking habits were taken into consideration (Ex. L-140-50).
The primary evidence for quantifying a link between lung cancer and cadmium exposure from animal studies derives from two rat bioassay studies; one by Takenaka et al., (1983), which is a study of cadmium chloride and a second study by Oldiges and Glaser (1990) of four cadmium compounds.
Based on the above cited studies, the U.S. Environmental Protection Agency (EPA) classified cadmium as “B1”, a probable human carcinogen, in 1985 (Ex. 4-4). The International Agency for Research on Cancer (IARC) in 1987 also recommended that cadmium be listed as “2A”, a probable human carcinogen (Ex. 4-15). The American Conference of Governmental Industrial Hygienists (ACGIH) has recently recommended that cadmium be labeled as a carcinogen. Since 1984, NIOSH has concluded that cadmium is possibly a human carcinogen and has recommended that exposures be controlled to the lowest level feasible.
Acute pneumonitis occurs 10 to 24 hours after initial acute inhalation of high levels of cadmium fumes with symptoms such as fever and chest pain (Exs. 30, 8-86B). In extreme exposure cases pulmonary edema may develop and cause death several days after exposure. Little actual exposure measurement data is available on the level of airborne cadmium exposure that causes such immediate adverse lung effects, nonetheless, it is reasonable to believe a cadmium concentration of approximately 1 mg/m
In addition to acute lung effects and chronic renal effects, long term exposure to cadmium may cause other severe effects on the respiratory system. Reduced pulmonary function and chronic lung disease indicative of emphysema have been observed in workers who have had prolonged exposure to cadmium dust or fumes (Exs. 4-29, 4-22, 4-42, 4-50, 4-63). In a study of workers conducted by Kazantzis et al., a statistically significant excess of worker deaths due to chronic bronchitis was found, which in his opinion was directly related to high cadmium exposures of 1 mg/m
Cadmium need not be respirable to constitute a hazard. Inspirable cadmium particles that are too large to be respirable but small enough to enter the tracheobronchial region of the lung can lead to bronchoconstriction, chronic pulmonary disease, and cancer of that portion of the lung. All of these diseases have been associated with occupational exposure to cadmium (Ex. 8-86B). Particles that are constrained by their size to the extra-thoracic regions of the respiratory system such as the nose and maxillary sinuses can be swallowed through mucocillary clearance and be absorbed into the body (ACGIH, Ex. 8-692). The impaction of these particles in the upper airways can lead to anosmia, or loss of sense of smell, which is an early indication of overexposure among workers exposed to heavy metals. This condition is commonly reported among cadmium-exposed workers (Ex. 8-86-B).
In general, the main provisions of the medical surveillance section of the standard, under paragraphs (l)(1)-(17) of the regulatory text, are as follows:
1. Workers exposed above the action level are covered;
2. Workers with intermittent exposures are not covered;
3. Past workers who are covered receive biological monitoring for at least one year;
4. Initial examinations include a medical questionnaire and biological monitoring of cadmium in blood (CdB), cadmium in urine (CdU), and Beta-2-microglobulin in urine (β
5. Biological monitoring of these three analytes is performed at least annually; full medical examinations are performed biennially;
6. Until five years from the effective date of the standard, medical removal is required when CdU is greater than 15 µg/gram creatinine (g Cr), or CdB is greater than 15 µg/liter whole blood (lwb), or β
7. Beginning five years after the standard is in effect, medical removal triggers will be reduced;
8. Medical removal protection benefits are to be provided for up to 18 months;
9. Limited initial medical examinations are required for respirator usage;
10. Major provisions are fully described under section (l) of the regulatory text; they are outlined here as follows:
11. The above mentioned summary of the medical surveillance provisions, the summary chart, and tables for the actions triggered at different levels of CdU, CdB and β
1. It is strongly recommended that patients with tubular proteinuria are counseled on: The hazards of smoking; avoidance of nephrotoxins and certain prescriptions and over-the-counter medications that may exacerbate kidney symptoms; how to control diabetes and/or blood pressure; proper hydration, diet, and exercise (Ex. 19-2). A list of prominent or common nephrotoxins is attached. (See appendix A Attachment-2.)
2. DO NOT CHELATE; KNOW WHICH DRUGS ARE NEPHROTOXINS OR ARE ASSOCIATED WITH NEPHRITIS.
3. The gravity of cadmium-induced renal damage is compounded by the fact there is no medical treatment to prevent or reduce the accumulation of cadmium in the kidney (Ex. 8-619). Dr. Friberg, a leading world expert on cadmium toxicity, indicated in 1992, that there is no form of chelating agent that could be used without substantial risk. He stated that tubular proteinuria has to be treated in the same way as other kidney disorders (Ex. 29).
4. After the results of a workers' biological monitoring or medical examination are received the employer is required to provide an information sheet to the patient, briefly explaining the significance of the results. (See Attachment 3 of this appendix A.)
5. For additional information the physician is referred to the following additional resources:
a. The physician can always obtain a copy of the preamble, with its full discussion of the health effects, from OSHA's Computerized Information System (OCIS).
b. The Docket Officer maintains a record of the rulemaking. The Cadmium Docket (H-057A), is located at 200 Constitution Ave. NW., room N-2625, Washington, DC 20210; telephone: 202-219-7894.
c. The following articles and exhibits in particular from that docket (H-057A):
Exhibit number | Author and paper title |
---|---|
8-447 | Lauwerys |
4-67 | Takenaka, S., H. Oldiges, H. Konig, D. Hochrainer, G. Oberdorster. “Carcinogenicity of Cadmium Chloride Aerosols in Wistar Rats”. |
4-68 | Thun, M.J., T.M. Schnoor, A.B. Smith, W.E. Halperin, R.A. Lemen. “Mortality Among a Cohort of U.S. Cadmium Production Workers—An Update.” |
4-25 | Elinder, C.G., Kjellstrom, T., Hogstedt, C., |
4-26 | Ellis, K.J. |
4-27 | Ellis, K.J., S.H. Cohn and T.J. Smith. “Cadmium Inhalation Exposure Estimates: Their Significance with Respect to Kidney and Liver Cadmium Burden.” |
4-28 | Falck, F.Y., Jr., Fine, L.J., Smith, R.G., McClatchey, K.D., Annesley, T., England, B., and Schork, A.M. “Occupational Cadmium Exposure and Renal Status.” |
8-86A | Friberg, L., C.G. Elinder, |
8-86B | Friberg, L., C.G. Elinder, |
L-140-45 | Elinder, C.G., “Cancer Mortality of Cadmium Workers”, |
L-140-50 | Thun, M., Elinder, C.G., Friberg, L, “Scientific Basis for an Occupational Standard for Cadmium, |
The information sheet (appendix A Attachment-3.) or an equally explanatory one should be provided to you after any biological monitoring results are reviewed by the physician, or where applicable, after any medical examination.
(A) Biological monitoring results categories are set forth in appendix A Table A for the periods ending December 31, 1998 and for the period beginning January 1, 1999.
(B) The results of the biological monitoring for the initial medical exam and the subsequent exams shall determine an employee's biological monitoring result category.
(A)
(i) The actions triggered by biological monitoring for an employee are set forth in appendix A Table B.
(ii) The biological monitoring results for each employee under section (1)(3) shall determine the actions required for that employee. That is, for any employee in biological monitoring category C, the employer will perform all of the actions for which there is an X in column C of appendix A Table B.
(iii) An employee is assigned the alphabetical category (“A” being the lowest) depending upon the test results of the three biological markers.
(iv) An employee is assigned category A if monitoring results for all three biological markers fall at or below the levels indicated in the table listed for category A.
(v) An employee is assigned category B if any monitoring result for any of the three biological markers fall within the range of levels indicated in the table listed for category B, providing no result exceeds the levels listed for category B.
(vi) An employee is assigned category C if any monitoring result for any of the three biological markers are above the levels listed for category C.
(B) The user of appendix A Tables A and B should know that these tables are provided only to facilitate understanding of the relevant provisions of paragraph (l)(3) of this section. appendix A Tables A and B are not meant to add to or subtract from the requirements of those provisions.
Applicable Through 1998 Only
Biological marker | Monitoring result categories | ||
---|---|---|---|
A | B | C | |
Cadmium in urine (CdU) (µg/g creatinine) | ≤3 | >3 and ≤15 | >15 |
β | ≤300 | >300 and ≤1500 | >1500* |
Cadmium in blood (CdB) (µg/liter whole blood) | ≤5 | >5 and ≤15 | >15 |
* If an employee's β
Applicable Beginning January 1, 1999
Biological marker | Monitoring result categories | ||
---|---|---|---|
A | B | C | |
Cadmium in urine (CdU) (µg/g creatinine) | ≤3 | >3 and ≤7 | >7 |
β | ≤300 | >300 and ≤750 | >750* |
Cadmium in blood (CdB) (µg/liter whole blood) | ≤5 | >5 and ≤10 | >10 |
* If an employee's β
This table presents the actions required based on the monitoring result in appendix A Table A. Each item is a separate requirement in citing non-compliance. For example, a medical examination within 90 days for an employee in category B is separate from the requirement to administer a periodic medical examination for category B employees on an annual basis.
Required actions | Monitoring result category | ||
---|---|---|---|
A 1 | B 1 | C 1 | |
(1) Biological monitoring: | |||
(a) Annual. | X | ||
(b) Semiannual | X | ||
(c) Quarterly | X | ||
(2) Medical examination: | |||
(a) Biennial | X | ||
(b) Annual. | X | ||
(c) Semiannual. | X | ||
(d) Within 90 days | X | X | |
(3) Assess within two weeks: | |||
(a) Excess cadmium exposure | X | X | |
(b) Work practices | X | X | |
(c) Personal hygiene | X | X | |
(d) Respirator usage | X | X | |
(e) Smoking history | X | X | |
(f) Hygiene facilities | X | X | |
(g) Engineering controls | X | X | |
(h) Correct within 30 days | X | X | |
(i) Periodically assess exposures | X | ||
(4) Discretionary medical removal | X | X | |
(5) Mandatory medical removal | X 2 |
1 For all employees covered by medical surveillance exclusively because of exposures prior to the effective date of this standard, if they are in Category A, the employer shall follow the requirements of paragraphs (l)(3)(i)(B) and (l)(4)(v)(A). If they are in Category B or C, the employer shall follow the requirements of paragraphs (l)(4)(v)(B)-(C).
2 See footnote appendix A Table A.
A list of the more common medications that a physician, and the employee, may wish to review is likely to include some of the following: (1) Anticonvulsants: Paramethadione, phenytoin, trimethadone; (2) antihypertensive drugs: Captopril, methyldopa; (3) antimicrobials: Aminoglycosides, amphotericin B, cephalosporins, ethambutol; (4) antineoplastic agents: Cisplatin, methotrexate, mitomycin-C, nitrosoureas, radiation; (4) sulfonamide diuretics: Acetazolamide, chlorthalidone, furosemide, thiazides; (5) halogenated alkanes, hydrocarbons, and solvents that may occur in some settings: Carbon tetrachloride, ethylene glycol, toluene; iodinated radiographic contrast media; nonsteroidal anti-inflammatory drugs; and, (7) other miscellaneous compounds: Acetominophen, allopurinol, amphetamines, azathioprine, cimetidine, cyclosporine, lithium, methoxyflurane, methysergide, D-penicillamine, phenacetin, phenendione. A list of drugs associated with acute interstitial nephritis includes: (1) Antimicrobial drugs: Cephalosporins, chloramphenicol, colistin, erythromycin, ethambutol, isoniazid, para-aminosalicylic acid, penicillins, polymyxin B, rifampin, sulfonamides, tetracyclines, and vancomycin; (2) other miscellaneous drugs: Allopurinol, antipyrene, azathioprine, captopril, cimetidine, clofibrate, methyldopa, phenindione, phenylpropanolamine, phenytoin, probenecid, sulfinpyrazone, sulfonamid diuretics, triamterene; and, (3) metals: Bismuth, gold.
This list have been derived from commonly available medical textbooks (e.g., Ex. 14-18). The list has been included merely to facilitate the physician's, employer's, and employee's understanding. The list does not represent an official OSHA opinion or policy regarding the use of these medications for particular employees. The use of such medications should be under physician discretion.
Cadmium in Urine ___ µg/g Cr—Normal Levels: ≤3 µg/g Cr.
Cadmium in Blood ___ µg/lwb—Normal Levels: ≤5 µg/lwb.
Beta-2-microglobulin in Urine ___ µg/g Cr—Normal Levels: ≤300 µg/g Cr.
Physical Examination Results: N/A ___ Satisfactory ___ Unsatisfactory ___ (see physician again).
Physician's Review of Pulmonary Function Test: N/A ___ Normal ___ Abnormal ___.
The biological monitoring program has been designed for three main purposes: 1) to identify employees at risk of adverse health effects from excess, chronic exposure to cadmium; 2) to prevent cadmium-induced disease(s); and 3) to detect and minimize existing cadmium-induced disease(s).
The levels of cadmium in the urine and blood provide an estimate of the total amount of cadmium in the body. The amount of a specific protein in the urine (beta-2-microglobulin) indicates changes in kidney function. All three tests must be evaluated together. A single mildly elevated result may not be important if testing at a later time indicates that the results are normal and the workplace has been evaluated to decrease possible sources of cadmium exposure. The levels of cadmium or beta-2-microglobulin may change over a period of days to months and the time needed for those changes to occur is different for each worker.
If the results for biological monitoring are above specific “high levels” [cadmium urine greater than 10 micrograms per gram of creatinine (µg/g Cr), cadmium blood greater than 10 micrograms per liter of whole blood (µg/lwb), or beta-2-microglobulin greater than 1000 micrograms per gram of creatinine (µg/g Cr)], the worker has a much greater chance of developing other kidney diseases.
One way to measure for kidney function is by measuring beta-2-microglobulin in the urine. Beta-2-microglobulin is a protein which is normally found in the blood as it is being filtered in the kidney, and the kidney reabsorbs or returns almost all of the beta-2-microglobulin to the blood. A very small amount (less than 300 µg/g Cr in the urine) of beta-2-microglobulin is not reabsorbed into the blood, but is released in the urine. If cadmium damages the kidney, the amount of beta-2-microglobulin in the urine increases because the kidney cells are unable to reabsorb the beta-2-microglobulin normally. An increase in the amount of beta-2-microglobulin in the urine is a very early sign of kidney dysfunction. A small increase in beta-2-microglobulin in the urine will serve as an early warning sign that the worker may be absorbing cadmium from the air, cigarettes contaminated in the workplace, or eating in areas that are cadmium contaminated.
Even if cadmium causes permanent changes in the kidney's ability to reabsorb beta-2-microglobulin, and the beta-2-microglobulin is above the “high levels”, the loss of kidney function may not lead to any serious health problems. Also, renal function naturally declines as people age. The risk for changes in kidney function for workers who have biological monitoring results between the “normal values” and the “high levels” is not well known. Some people are more cadmium-tolerant, while others are more cadmium-susceptible.
For anyone with even a slight increase of beta-2-microglobulin, cadmium in the urine, or cadmium in the blood, it is very important to protect the kidney from further damage. Kidney damage can come from other sources than excess cadmium-exposure so it is also recommended that if a worker's levels are “high” he/she should receive counseling about drinking more water; avoiding cadmium-tainted tobacco and certain medications (nephrotoxins, acetaminophen); controlling diet, vitamin intake, blood pressure and diabetes; etc.
A. Physical and Chemical Data.
1. Substance Identification.
Chemical name: Cadmium.
Formula: Cd.
Molecular Weight: 112.4.
Chemical Abstracts Service (CAS) Registry No.: 7740-43-9.
Other Identifiers: RETCS EU9800000; EPA D006; DOT 2570 53.
Synonyms: Colloidal Cadmium: Kadmium (German): CI 77180.
2. Physical data.
Boiling point: (760 mm Hg): 765 degrees C.
Melting point: 321 degrees C.
Specific Gravity: (H
Solubility: Insoluble in water; soluble in dilute nitric acid and in sulfuric acid.
Appearance: Soft, blue-white, malleable, lustrous metal or grayish-white powder.
B. Fire, Explosion and Reactivity Data.
1. Fire.
Fire and Explosion Hazards: The finely divided metal is pyrophoric, that is the dust is a severe fire hazard and moderate explosion hazard when exposed to heat or flame. Burning material reacts violently with extinguishing agents such as water, foam, carbon dioxide, and halons.
Flash point: Flammable (dust).
Extinguishing media: Dry sand, dry dolomite, dry graphite, or sodimum chloride.
2. Reactivity.
Conditions contributing to instability: Stable when kept in sealed containers under normal temperatures and pressure, but dust may ignite upon contact with air. Metal tarnishes in moist air.
Incompatibilities: Ammonium nitrate, fused: Reacts violently or explosively with cadmium dust below 20 °C. Hydrozoic acid: Violent explosion occurs after 30 minutes. Acids: Reacts violently, forms hydrogen gas. Oxidizing agents or metals: Strong reaction with cadmium dust. Nitryl fluoride at slightly elevated temperature: Glowing or white incandescence occurs. Selenium: Reacts exothermically. Ammonia: Corrosive reaction. Sulfur dioxide: Corrosive reaction. Fire extinguishing agents (water, foam, carbon dioxide, and halons): Reacts violently. Tellurium: Incandescent reaction in hydrogen atmosphere.
Hazardous decomposition products: The heated metal rapidly forms highly toxic, brownish fumes of oxides of cadmium.
C. Spill, Leak and Disposal Procedures.
1. Steps to be taken if the materials is released or spilled. Do not touch spilled material. Stop leak if you can do it without risk. Do not get water inside container. For large spills, dike spill for later disposal. Keep unnecessary people away. Isolate hazard area and deny entry. The Superfund Amendments and Reauthorization Act of 1986 Section 304 requires that a release equal to or greater than the reportable quantity for this substance (1 pound) must be immediately reported to the local emergency planning committee, the state emergency response commission, and the National Response Center (800) 424-8802; in Washington, DC metropolitan area (202) 426-2675.
A. Physical and Chemical Date.
1. Substance identification.
Chemical name: Cadmium Oxide.
Formula: CdO.
Molecular Weight: 128.4.
CAS No.: 1306-19-0.
Other Identifiers: RTECS EV1929500.
Synonyms: Kadmu tlenek (Polish).
2. Physical data.
Boiling point (760 mm Hg): 950 degrees C decomposes.
Melting point: 1500 °C.
Specific Gravity: (H
Solubility: Insoluble in water; soluble in acids and alkalines.
Appearance: Red or brown crystals.
B. Fire, Explosion and Reactivity Data.
1. Fire.
Fire and Explosion Hazards: Negligible fire hazard when exposed to heat or flame.
Flash point: Nonflammable.
Extinguishing media: Dry chemical, carbon dioxide, water spray or foam.
2. Reactivity.
Conditions contributing to instability: Stable under normal temperatures and pressures.
Incompatibilities: Magnesium may reduce CdO
Hazardous decomposition products: Toxic fumes of cadmium.
C. Spill Leak and Disposal Procedures.
1. Steps to be taken if the material is released or spilled. Do not touch spilled material. Stop leak if you can do it without risk. For small spills, take up with sand or other absorbent material and place into containers for later disposal. For small dry spills, use a clean shovel to place material into clean, dry container and then cover. Move containers from spill area. For larger spills, dike far ahead of spill for later disposal. Keep unnecessary people away. Isolate hazard area and deny entry. The Superfund Amendments and Reauthorization Act of 1986 Section 304 requires that a release equal to or greater than the reportable quantity for this substance (1 pound) must be immediately reported to the local emergency planning committee, the state emergency response commission, and the National Response Center (800) 424-8802; in Washington, DC metropolitan area (202) 426-2675.
III. Cadmium Sulfide.
A. Physical and Chemical Data.
1. Substance Identification.
Chemical name: Cadmium sulfide.
Formula: CdS.
Molecular weight: 144.5.
CAS No. 1306-23-6.
Other Identifiers: RTECS EV3150000.
Synonyms: Aurora yellow; Cadmium Golden 366; Cadmium Lemon Yellow 527; Cadmium Orange; Cadmium Primrose 819; Cadmium Sulphide; Cadmium Yellow; Cadmium Yellow 000; Cadmium Yellow Conc. Deep; Cadmium Yellow Conc. Golden; Cadmium Yellow Conc. Lemon; Cadmium Yellow Conc. Primrose; Cadmium Yellow Oz. Dark; Cadmium Yellow Primrose 47-1400; Cadmium Yellow 10G Conc.; Cadmium Yellow 892; Cadmopur Golden Yellow N; Cadmopur Yellow: Capsebon; C.I. 77199; C.I. Pigment Orange 20; CI Pigment Yellow 37; Ferro Lemon Yellow; Ferro Orange Yellow; Ferro Yellow; Greenockite; NCI-C02711.
2. Physical data.
Boiling point (760 mm. Hg): sublines in N
Melting point: 1750 degrees C (100 atm).
Specific Gravity: (H
Solubility: Slightly soluble in water; soluble in acid.
Appearance: Light yellow or yellow-orange crystals.
B. Fire, Explosion and Reactivity Data.
1. Fire.
Fire and Explosion Hazards: Neglible fire hazard when exposed to heat or flame.
Flash point: Nonflammable.
Extinguishing media: Dry chemical, carbon dioxide, water spray or foam.
2. Reactivity.
Conditions contributing to instability: Generally non-reactive under normal conditions. Reacts with acids to form toxic hydrogen sulfide gas.
Incompatibilities: Reacts vigorously with iodinemonochloride.
Hazardous decomposition products: Toxic fumes of cadmium and sulfur oxides.
C. Spill Leak and Disposal Procedures.
1. Steps to be taken if the material is released or spilled. Do not touch spilled material. Stop leak if you can do it without risk. For small, dry spills, with a clean shovel place material into clean, dry container and cover. Move containers from spill area. For larger spills, dike far ahead of spill for later disposal. Keep unnecessary people away. Isolate hazard and deny entry.
IV. Cadmium Chloride.
A. Physical and Chemical Data.
1. Substance Identification.
Chemcail name: Cadmium chloride.
Formula: CdC1
Molecular weight: 183.3.
CAS No. 10108-64-2.
Other Identifiers: RTECS EY0175000.
Synonyms: Caddy; Cadmium dichloride; NA 2570 (DOT); UI-CAD; dichlorocadmium.
2. Physical data.
Boiling point (760 mm Hg): 960 degrees C.
Melting point: 568 degrees C.
Specific Gravity: (H
Solubility: Soluble in water (140 g/100 cc); soluble in acetone.
Appearance: Small, white crystals.
B. Fire, Explosion and Reactivity Data.
1. Fire.
Fire and Explosion Hazards: Negligible fire and negligible explosion hazard in dust form when exposed to heat or flame.
Flash point: Nonflamable.
Extinguishing media: Dry chemical, carbon dioxide, water spray or foam.
2. Reactivity.
Conditions contributing to instability: Generally stable under normal temperatures and pressures.
Incompatibilities: Bromine trifluoride rapidly attacks cadmium chloride. A mixture of potassium and cadmium chloride may produce a strong explosion on impact.
Hazardous decomposition products: Thermal ecompostion may release toxic fumes of hydrogen chloride, chloride, chlorine or oxides of cadmium.
C. Spill Leak and Disposal Procedures.
1. Steps to be taken if the materials is released or spilled. Do not touch spilled material. Stop leak if you can do it without risk. For small, dry spills, with a clean shovel place material into clean, dry container and cover. Move containers from spill area. For larger spills, dike far ahead of spill for later disposal. Keep unnecessary people away. Isolate hazard and deny entry. The Superfund Amendments and Reauthorization Act of 1986 Section 304 requires that a release equal to or greater than the reportable quantity for this substance (100 pounds) must be immediately reported to the local emergency planning committee, the state emergency response commission, and the National Response Center (800) 424-8802; in Washington, DC Metropolitan area (202) 426-2675.
Inorganic Service Branch II, OSHA Salt Lake Technical Center, Salt Lake City, Utah
Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted.
This method describes the collection of airborne elemental cadmium and cadmium compounds on 0.8-µm mixed cellulose ester membrane filters and their subsequent analysis by either flame atomic absorption spectroscopy (AAS) or flameless atomic absorption spectroscopy using a heated graphite furnace atomizer (AAS-HGA). It is applicable for both TWA and Action Level TWA Permissible Exposure Level (PEL) measurements. The two atomic absorption analytical techniques included in the method do not differentiate between cadmium fume and cadmium dust samples. They also do not differentiate between elemental cadmium and its compounds.
Airborne elemental cadmium and cadmium compounds are collected on a 0.8-µm mixed cellulose ester membrane filter (MCEF). The air filter samples are digested with concentrated nitric acid to destroy the organic matrix and dissolve the cadmium analytes. After digestion, a small amount of concentrated hydrochloric acid is added to help dissolve other metals which may be present. The samples are diluted to volume with deionized water and then aspirated into the oxidizing air/acetylene flame of an atomic absorption spectrophotometer for analysis of elemental cadmium.
If the concentration of cadmium in a sample solution is too low for quantitation by this flame AAS analytical technique, and the sample is to be averaged with other samples for TWA calculations, aliquots of the sample and a matrix modifier are later injected onto a L'vov platform in a pyrolytically-coated graphite tube of a Zeeman atomic absorption spectrophotometer/graphite furnace assembly for analysis of elemental cadmium. The matrix modifier is added to stabilize the cadmium metal and minimize sodium chloride as an interference during the high temperature charring step of the analysis (5.1., 5.2.).
Previously, two OSHA sampling and analytical methods for cadmium were used concurrently (5.3., 5.4.). Both of these methods also required 0.8-µm mixed cellulose ester membrane filters for the collection of air samples. These cadmium air filter samples were analyzed by either flame atomic absorption spectroscopy (5.3.) or inductively coupled plasma/atomic emission spectroscopy (ICP-AES) (5.4.). Neither of these two analytical methods have adequate sensitivity for measuring workplace exposure to airborne cadmium at the new lower TWA and Action Level TWA PEL levels when consecutive samples are taken on one employee and the sample results need to be averaged with other samples to determine a single TWA.
The inclusion of two atomic absorption analytical techniques in the new sampling and analysis method for airborne cadmium permits quantitation of sample results over a broad range of exposure levels and sampling periods. The flame AAS analytical technique included in this method is similar to the previous procedure given in the General Metals Method ID-121 (5.3.) with some modifications. The sensitivity of the AAS-HGA analytical technique included in this method is adequate to measure exposure levels at
Elemental cadmium is a silver-white, blue-tinged, lustrous metal which is easily cut with a knife. It is slowly oxidized by moist air to form cadmium oxide. It is insoluble in water, but reacts readily with dilute nitric acid. Some of the physical properties and other descriptive information of elemental cadmium are given below:
The properties of specific cadmium compounds are described in reference 5.5.
A synopsis of method performance is presented below. Further information can be found in Section 4.
1.5.1. The qualitative and quantitative detection limits for the flame AAS analytical technique are 0.04 µg (0.004 µg/mL) and 0.14 µg (0.014 µg/mL) cadmium, respectively, for a 10 mL solution volume. These correspond, respectively, to 0.2 µg/m
1.5.2. The qualitative and quantitative detection limits for the AAS-HGA analytical technique are 0.44 ng (0.044 ng/mL) and 1.5 ng (0.15 ng/mL) cadmium, respectively, for a 10 mL solution volume. These correspond, respectively, to 0.007 µg/m
1.5.3. The average recovery by the flame AAS analytical technique of 17 spiked MCEF samples containing cadmium in the range of 0.5 to 2.0 times the TWA target concentration of 5 µg/m
1.5.4. The average recovery by the AAS-HGA analytical technique of 18 spiked MCEF samples containing cadmium in the range of 0.5 to 2.0 times the Action Level TWA target concentration of 2.5 µg/m
1.5.5. Sensitivity in flame atomic absorption is defined as the characteristic concentration of an element required to produce a signal of 1% absorbance (0.0044 absorbance units). Sensitivity values are listed for each element by the atomic absorption spectrophotometer manufacturer and have proved to be a very valuable diagnostic tool to determine if instrumental parameters are optimized and if the instrument is performing up to specification. The sensitivity of the spectrophotometer used in the validation of the flame AAS analytical technique agreed with the manufacturer specifications (5.6.); the 2 µg/mL cadmium standard gave an absorbance reading of 0.350 abs. units.
1.5.6. Sensitivity in graphite furnace atomic absorption is defined in terms of the characteristic mass, the number of picograms required to give an integrated absorbance value of 0.0044 absorbance-second (5.7.). Data suggests that under Stabilized Temperature Platform Furnace (STPF) conditions (see Section 1.6.2.), characteristic mass values are transferable between properly functioning instruments to an accuracy of about 20% (5.2.). The characteristic mass for STPF analysis of cadmium with Zeeman background correction listed by the manufacturer of the instrument used in the validation of the AAS-HGA analytical technique was 0.35 pg. The experimental characteristic mass value observed during the determination of the working range and detection limits of the AAS-HGA analytical technique was 0.41 pg.
1.6.1. High concentrations of silicate interfere in determining cadmium by flame AAS (5.6.). However, silicates are not significantly soluble in the acid matrix used to prepare the samples.
1.6.2. Interferences, such as background absorption, are reduced to a minimum in the AAS-HGA analytical technique by taking full advantage of the Stabilized Temperature Platform Furnace (STPF) concept. STPF includes all of the following parameters (5.2.):
Information listed within this section is synopsis of current knowledge of the physiological effects of cadmium and is not intended to be used as the basis for OSHA policy. IARC classifies cadmium and certain of its compounds as Group 2A carcinogens (probably carcinogenic to humans). Cadmium fume is intensely irritating to the respiratory tract. Workplace exposure to cadmium can cause both chronic and acute effects. Acute effects include tracheobronchitis, pneumonitis, and pulmonary edema. Chronic effects include anemia, rhinitis/anosmia, pulmonary emphysema, proteinuria and lung cancer. The primary target organs for chronic disease are the kidneys (non-carcinogenic) and the lungs (carcinogenic).
2.1.1. Filter cassette unit for air sampling: A 37-mm diameter mixed cellulose ester membrane filter with a pore size of 0.8-µm contained in a 37-mm polystyrene two- or three-piece cassette filter holder (part no. MAWP 037 A0, Millipore Corp., Bedford, MA). The filter is supported with a cellulose backup pad. The cassette is sealed prior to use with a shrinkable gel band.
2.1.2. A calibrated personal sampling pump whose flow is determined to an accuracy of ±5% at the recommended flow rate with the filter cassette unit in line.
2.2.1. Attach the prepared cassette to the calibrated sampling pump (the backup pad should face the pump) using flexible tubing. Place the sampling device on the employee such that air is sampled from the breathing zone.
2.2.2. Collect air samples at a flow rate of 2.0 L/min. If the filter does not become overloaded, a full-shift (at least seven hours) sample is strongly recommended for TWA and Action Level TWA measurements with a maximum air volume of 960 L. If overloading occurs, collect consecutive air samples for shorter sampling periods to cover the full workshift.
2.2.3. Replace the end plugs into the filter cassettes immediately after sampling. Record the sampling conditions.
2.2.4. Securely wrap each sample filter cassette end-to-end with an OSHA Form 21 sample seal.
2.2.5. Submit at least one blank sample with each set of air samples. The blank sample should be handled the same as the other samples except that no air is drawn through it.
2.2.6. Ship the samples to the laboratory for analysis as soon as possible in a suitable container designed to prevent damage in transit.
3.1.1. Wear safety glasses, protective clothing and gloves at all times.
3.1.2. Handle acid solutions with care. Handle all cadmium samples and solutions with extra care (see Sect. 1.7.). Avoid their direct contact with work area surfaces, eyes, skin and clothes. Flush acid solutions which contact the skin or eyes with copious amounts of water.
3.1.3. Perform all acid digestions and acid dilutions in an exhaust hood while wearing a face shield. To avoid exposure to acid vapors, do not remove beakers containing concentrated acid solutions from the exhaust hood until they have returned to room temperature and have been diluted or emptied.
3.1.4. Exercise care when using laboratory glassware. Do not use chipped pipets, volumetric flasks, beakers or any glassware with sharp edges exposed in order to avoid the possibility of cuts or abrasions.
3.1.5. Never pipet by mouth.
3.1.6. Refer to the instrument instruction manuals and SOPs (5.8., 5.9.) for proper and safe operation of the atomic absorption spectrophotometer, graphite furnace atomizer and associated equipment.
3.1.7. Because metallic elements and other toxic substances are vaporized during AAS flame or graphite furnace atomizer operation, it is imperative that an exhaust vent be used. Always ensure that the exhaust system is operating properly during instrument use.
3.2.1. Hot plate, capable of reaching 150 °C, installed in an exhaust hood.
3.2.2. Phillips beakers, 125 mL.
3.2.3. Bottles, narrow-mouth, polyethylene or glass with leakproof caps: used for storage of standards and matrix modifier.
3.2.4. Volumetric flasks, volumetric pipets, beakers and other associated general laboratory glassware.
3.2.5. Forceps and other associated general laboratory equipment.
3.3.1. Atomic absorption spectrophotometer consisting of a(an):
3.3.2. Oxidant: compressed air, filtered to remove water, oil and other foreign substances.
3.3.3. Fuel: standard commercially available tanks of acetylene dissolved in acetone; tanks should be equipped with flash arresters.
3.3.4. Pressure-reducing valves: two gauge, two-stage pressure regulators to maintain fuel and oxidant pressures somewhat higher than the controlled operating pressures of the instrument.
3.3.5. Exhaust vent installed directly above the spectrophotometer burner head.
3.4.1. Atomic absorption spectrophotometer consisting of a(an):
3.4.2. Pyrolytically coated graphite tubes containing solid, pyrolytic L'vov platforms.
3.4.3. Polyethylene sample cups, 2.0 to 2.5 mL, for use with the autosampler.
3.4.4. Inert purge gas for graphite furnace atomizer: compressed gas cylinder of purified argon.
3.4.5. Two gauge, two-stage pressure regulator for the argon gas cylinder.
3.4.6. Cooling water supply for graphite furnace atomizer.
3.4.7. Exhaust vent installed directly above the graphite furnace atomizer.
All reagents should be ACS analytical reagent grade or better.
3.5.1. Deionized water with a specific conductance of less than 10 µS.
3.5.2. Concentrated nitric acid, HNO
3.5.3. Concentrated hydrochloric acid, HCl.
3.5.4. Ammonium phosphate, monobasic, NH
3.5.5. Magnesium nitrate, Mg(NO
3.5.6. Diluting solution (4% HNO
3.5.7. Cadmium standard stock solution, 1,000 µg/mL: Use a commercially available certified 1,000 µg/mL cadmium standard or, alternatively, dissolve 1.0000 g of cadmium metal in a minimum volume of 1:1 HCl and dilute to 1 L with 4% HNO
3.5.8. Matrix modifier for AAS-HGA analysis: Dissolve 1.0 g NH
3.5.9 Nitric Acid, 1:1 HNO
3.5.10. Nitric acid, 10% v/v: Carefully add 100 mL of concentrated HNO
3.6.1. Clean Phillips beakers by refluxing with 1:1 nitric acid on a hot plate in a fume hood. Thoroughly rinse with deionized water and invert the beakers to allow them to drain dry.
3.6.2. Rinse volumetric flasks and all other glassware with 10% nitric acid and deionized water prior to use.
3.7.1. Dilute stock solutions: Prepare 1, 5, 10 and 100 µg/mL cadmium standard stock solutions by making appropriate serial dilutions of 1,000 µg/mL cadmium standard stock solution with the diluting solution described in Section 3.5.6.
3.7.2. Working standards: Prepare cadmium working standards in the range of 0.02 to 2.0 µg/mL by making appropriate serial dilutions of the dilute stock solutions with the same diluting solution. A suggested method of preparation of the working standards is given below.
Working standard | Std solution | Aliquot | Final vol. |
---|---|---|---|
(µg/mL) | (µg/mL) | (mL) | (mL) |
0.02 | 1 | 10 | 500 |
0.05 | 5 | 5 | 500 |
0.1 | 10 | 5 | 500 |
0.2 | 10 | 10 | 500 |
0.5 | 10 | 25 | 500 |
1 | 100 | 5 | 500 |
2 | 100 | 10 | 500 |
Store the working standards in 500-mL, narrow-mouth polyethylene or glass bottles with leak proof caps. Prepare every twelve months.
3.8.1. Dilute stock solutions: Prepare 10, 100 and 1,000 ng/mL cadmium standard stock solutions by making appropriate ten-fold serial dilutions of the 1,000 µg/mL cadmium standard stock solution with the diluting solution described in Section 3.5.6.
3.8.2. Working standards: Prepare cadmium working standards in the range of 0.2 to 20 ng/mL by making appropriate serial dilutions of the dilute stock solutions with the same diluting solution. A suggested method of preparation of the working standards is given below.
Working standard | Std solution | Aliquot | Final vol. |
---|---|---|---|
(ng/mL) | (ng/mL) | (mL) | (mL) |
0.2 | 10 | 2 | 100 |
0.5 | 10 | 5 | 100 |
1 | 10 | 10 | 100 |
2 | 100 | 2 | 100 |
5 | 100 | 5 | 100 |
10 | 100 | 10 | 100 |
20 | 1,000 | 2 | 100 |
Store the working standards in narrow-mouth polyethylene or glass bottles with leakproof caps. Prepare monthly.
3.9.1. Carefully transfer each sample filter with forceps from its filter cassette unit to a clean, separate 125-mL Phillips beaker along with any loose dust found in the cassette. Label each Phillips beaker with the appropriate sample number.
3.9.2. Digest the sample by adding 5 mL of concentrated nitric acid (HNO
3.9.3. After completing the HNO
3.9.4. Quantitatively transfer each cooled air sample solution from each Phillips beaker to a clean 10-mL volumetric flask. Dilute each flask to volume with deionized water and mix well.
Analyze all of the air samples for their cadmium content by flame atomic absorption spectroscopy (AAS) according to the instructions given below.
3.10.1. Set up the atomic absorption spectrophotometer for the air/acetylene flame analysis of cadmium according to the SOP (5.8.) or the manufacturer's operational instructions. For the source lamp, use the cadmium hollow cathode or electrodeless discharge lamp operated at the manufacturer's recommended rating for continuous operation. Allow the lamp to warm up 10 to 20 min or until the energy output stabilizes. Optimize conditions such as lamp position, burner head alignment, fuel and oxidant flow rates, etc. See the SOP or specific instrument manuals for details. Instrumental parameters for the Perkin-Elmer Model 603 used in the validation of this method are given in Attachment 1.
3.10.2. Aspirate and measure the absorbance of a standard solution of cadmium. The standard concentration should be within the linear range. For the instrumentation used in the validation of this method a 2 µg/mL cadmium standard gives a net absorbance reading of about 0.350 abs. units (see Section 1.5.5.) when the instrument and the source lamp are performing to manufacturer specifications.
3.10.3. To increase instrument response, scale expand the absorbance reading of the aspirated 2 µg/mL working standard approximately four times. Increase the integration time to at least 3 seconds to reduce signal noise.
3.10.4. Autozero the instrument while aspirating a deionized water blank. Monitor the variation in the baseline absorbance reading (baseline noise) for a few minutes to insure that the instrument, source lamp and associated equipment are in good operating condition.
3.10.5. Aspirate the working standards and samples directly into the flame and record their absorbance readings. Aspirate the deionized water blank immediately after every standard or sample to correct for and monitor any baseline drift and noise. Record the baseline absorbance reading of each deionized water blank. Label each standard and sample reading and its accompanying baseline reading.
3.10.6. It is recommended that the entire series of working standards be analyzed at the beginning and end of the analysis of a set of samples to establish a concentration-response curve, ensure that the standard readings agree with each other and are reproducible. Also, analyze a working standard after every five or six samples to monitor the performance of the spectrophotometer. Standard readings should agree within ±10 to 15% of the readings obtained at the beginning of the analysis.
3.10.7. Bracket the sample readings with standards during the analysis. If the absorbance reading of a sample is above the absorbance reading of the highest working standard, dilute the sample with diluting solution and reanalyze. Use the appropriate dilution factor in the calculations.
3.10.8. Repeat the analysis of approximately 10% of the samples for a check of precision.
3.10.9. If possible, analyze quality control samples from an independent source as a check on analytical recovery and precision.
3.10.10. Record the final instrument settings at the end of the analysis. Date and label the output.
Initially analyze all of the air samples for their cadmium content by flame atomic absorption spectroscopy (AAS) according to the instructions given in Section 3.10. If the concentration of cadmium in a sample solution is less than three times the quantitative detection limit [0.04 µg/mL (40 ng/mL) for the instrumentation used in the validation] and the sample results are to be averaged with other samples for TWA calculations, proceed with the AAS-HGA analysis of the sample as described below.
3.11.1. Set up the atomic absorption spectrophotometer and HGA for flameless atomic absorption analysis of cadmium according to the SOP (5.9.) or the manufacturer's operational instructions and allow the instrument to stabilize. The graphite furnace atomizer is equipped with a pyrolytically coated graphite tube containing a pyrolytic platform. For the source lamp, use a cadmium hollow cathode or electrodeless discharge lamp operated at the manufacturer's recommended setting for graphite furnace operation. The Zeeman background corrector and EDL are recommended for use with the L'vov platform. Instrumental parameters for the Perkin-Elmer Model 5100 spectrophotometer and Zeeman HGA-600 graphite furnace used in the validation of this method are given in Attachment 2.
3.11.2. Optimize the energy reading of the spectrophotometer at 228.8 nm by adjusting the lamp position and the wavelength according to the manufacturer's instructions.
3.11.3. Set up the autosampler to inject a 5-µL aliquot of the working standard, sample or reagent blank solution onto the L'vov platform along with a 10-µL overlay of the matrix modifier.
3.11.4. Analyze the reagent blank (diluting solution, Section 3.5.6.) and then autozero the instrument before starting the analysis of a set of samples. It is recommended that the reagent blank be analyzed several times during the analysis to assure the integrated absorbance (peak area) reading remains at or near zero.
3.11.5. Analyze a working standard approximately midway in the linear portion of the working standard range two or three times to check for reproducibility and sensitivity (see sections 1.5.5. and 1.5.6.) before starting the analysis of samples. Calculate the experimental characteristic mass value from the average integrated absorbance reading and injection volume of the analyzed working standard. Compare this value to the manufacturer's suggested value as a check of proper instrument operation.
3.11.6. Analyze the reagent blank, working standard, and sample solutions. Record and label the peak area (abs-sec) readings and the peak and background peak profiles on the printer/plotter.
3.11.7. It is recommended the entire series of working standards be analyzed at the beginning and end of the analysis of a set of samples. Establish a concentration-response curve and ensure standard readings agree with each other and are reproducible. Also, analyze a working standard after every five or six samples to monitor the performance of the system. Standard readings should agree within ±15% of the readings obtained at the beginning of the analysis.
3.11.8. Bracket the sample readings with standards during the analysis. If the peak area reading of a sample is above the peak area reading of the highest working standard, dilute the sample with the diluting solution and reanalyze. Use the appropriate dilution factor in the calculations.
3.11.9. Repeat the analysis of approximately 10% of the samples for a check of precision.
3.11.10. If possible, analyze quality control samples from an independent source as a check of analytical recovery and precision.
3.11.11. Record the final instrument settings at the end of the analysis. Date and label the output.
Standards used for HGA analysis are in ng/mL. Total amounts of cadmium from calculations will be in ng (not µg) unless a prior conversion is made.
3.12.1. Correct for baseline drift and noise in flame AAS analysis by subtracting each baseline absorbance reading from its corresponding working standard or sample absorbance reading to obtain the net absorbance reading for each standard and sample.
3.12.2. Use a least squares regression program to plot a concentration-response curve of net absorbance reading (or peak area for HGA analysis) versus concentration (µg/mL or ng/mL) of cadmium in each working standard.
3.12.3. Determine the concentration (µg/mL or ng/mL) of cadmium in each sample from the resulting concentration-response curve. If the concentration of cadmium in a sample solution is less than three times the quantitative detection limit [0.04 µg/mL (40 ng/mL) for the instrumentation used in the validation of the method] and if consecutive samples were taken on one employee and the sample results are to be averaged with other samples to determine a single TWA, reanalyze the sample by AAS-HGA as described in Section 3.11. and report the AAS-HGA analytical results.
3.12.4. Calculate the total amount (µg or ng) of cadmium in each sample from the sample solution volume (mL):
3.12.5. Make a blank correction for each air sample by subtracting the total amount of cadmium in the corresponding blank sample from the total amount of cadmium in the sample.
3.12.6. Calculate the concentration of cadmium in an air sample (mg/m
4.1.1. The purpose of this evaluation is to determine the analytical method recovery, working standard range, and qualitative and quantitative detection limits of the two atomic absorption analytical techniques included in this method. The evaluation consisted of the following experiments:
1. An analysis of 24 samples (six samples each at 0.1, 0.5, 1 and 2 times the TWA-PEL) for the analytical method recovery study of the flame AAS analytical technique.
2. An analysis of 18 samples (six samples each at 0.5, 1 and 2 times the Action Level TWA-PEL) for the analytical method recovery study of the AAS-HGA analytical technique.
3. Multiple analyses of the reagent blank and a series of standard solutions to determine the working standard range and the qualitative and quantitative detection limits for both atomic absorption analytical techniques.
4.1.2. The analytical method recovery results at all test levels were calculated from concentration-response curves and statistically examined for outliers at the 99% confidence level. Possible outliers were determined using the Treatment of Outliers test (5.10.). In addition, the sample results of the two analytical techniques, at 0.5, 1.0 and 2.0 times their target concentrations, were tested for homogeneity of variances also at the 99% confidence level. Homogeneity of the coefficients of variation was determined using the Bartlett's test (5.11.). The overall analytical error (OAE) at the 95% confidence level was calculated using the equation (5.12.):
4.1.3. A derivation of the International Union of Pure and Applied Chemistry (IUPAC) detection limit equation (5.13.) was used to determine the qualitative and quantitative detection limits for both atomic absorption analytical techniques:
4.1.4. Collection efficiencies of metallic fume and dust atmospheres on 0.8-µm mixed cellulose ester membrane filters are well documented and have been shown to be excellent (5.11.). Since elemental cadmium and the cadmium component of cadmium compounds are nonvolatile, stability studies of cadmium spiked MCEF samples were not performed.
4.2.1. A Perkin-Elmer (PE) Model 603 spectrophotometer equipped with a manual gas control system, a stainless steel nebulizer, a burner mixing chamber, a flow spoiler and a 10 cm. (one-slot) burner head was used in the experimental validation of the flame AAS analytical technique. A PE cadmium hollow cathode lamp, operated at the manufacturer's recommended current setting for continuous operation (4 mA), was used as the source lamp. Instrument parameters are listed in Attachment 1.
4.2.2. A PE Model 5100 spectrophotometer, Zeeman HGA-600 graphite furnace atomizer and AS-60 HGA autosampler were used in the experimental validation of the AAS-HGA analytical technique. The spectrophotometer was equipped with a PE Series 7700 professional computer and Model PR-310 printer. A PE System 2 cadmium electrodeless discharge lamp, operated at the manufacturer's recommended current setting for modulated operation (170 mA), was used as the source lamp. Instrument parameters are listed in Attachment 2.
4.3.1. J.T. Baker Chem. Co. (Analyzed grade) concentrated nitric acid, 69.0-71.0%, and concentrated hydrochloric acid, 36.5-38.0%, were used to prepare the samples and standards.
4.3.2. Ammonium phosphate, monobasic, NH
4.4.1. Dilute stock solutions: Prepared 0.01, 0.1, 1, 10 and 100 µg/mL cadmium standard stock solutions by making appropriate serial dilutions of a commercially available 1,000 µg/mL cadmium standard stock solution (RICCA Chemical Co., Lot# A102) with the diluting solution (4% HNO
4.4.2. Analyzed Standards: Prepared cadmium standards in the range of 0.001 to 2.0 µg/mL by pipetting 2 to 10 mL of the appropriate dilute cadmium stock solution into a 100-mL volumetric flask and diluting to volume with the diluting solution. (See Section 3.7.2.)
4.5.1. Dilute stock solutions: Prepared 1, 10, 100 and 1,000 ng/mL cadmium standard stock solutions by making appropriate serial dilutions of a commercially available 1,000 µg/mL cadmium standard stock solution (J.T. Baker Chemical Co., Instra-analyzed, Lot# D22642) with the diluting solution (4% HNO
4.5.2. Analyzed Standards: Prepared cadmium standards in the range of 0.1 to 40 ng/mL by pipetting 2 to 10 mL of the appropriate dilute cadmium stock solution into a 100-mL volumetric flask and diluting to volume with the diluting solution. (See Section 3.8.2.)
4.6.1. Analyzed the reagent blank solution and the entire series of cadmium standards in the range of 0.001 to 2.0 µg/mL three to six times according to the instructions given in Section 3.10. The diluting solution (4% HNO
4.6.2. The net absorbance readings of the reagent blank and the low concentration Cd standards from 0.001 to 0.1 µg/mL and the statistical analysis of the results are shown in Table I. The standard deviation, sd, of the six net absorbance readings of the reagent blank is 1.05 abs. units. The slope, m, as calculated by a linear regression plot of the net absorbance readings (shown in Table II) of the 0.02 to 1.0 µg/mL cadmium standards versus their concentration is 772.7 abs. units/(µg/mL).
4.6.3. If these values for sd and the slope, m, are used in Eqn. 1 (Sect. 4.1.3.), the qualitative and quantitative detection limits as determined by the IUPAC Method are:
4.6.4. The recommended Cd standard working range for flame AAS analysis is 0.02 to 2.0 µg/mL. The net absorbance readings of the reagent blank and the recommended working range standards and the statistical analysis of the results are shown in Table II. The standard of lowest concentration in the working range, 0.02 µg/mL, is slightly greater than the calculated quantitative detection limit, 0.014 µg/mL. The standard of highest concentration in the working range, 2.0 µg/mL, is at the upper end of the linear working range suggested by the manufacturer (5.6.). Although the standard net absorbance readings are not strictly linear at concentrations above 0.5 µg/mL, the deviation from linearity is only about 10% at the upper end of the recommended standard working range. The deviation from linearity is probably caused by the four-fold expansion of the signal suggested in the method. As shown in Table II, the precision of the standard net absorbance readings are excellent throughout the recommended working range; the relative standard deviations of the readings range from 0.009 to 0.064.
4.7.1. Analyzed the reagent blank solution and the entire series of cadmium standards in the range of 0.1 to 40 ng/mL according to the instructions given in Section 3.11. The diluting solution (4% HNO
4.7.2. The peak area (abs-sec) readings of the reagent blank and the low concentration Cd standards from 0.1 to 2.0 ng/mL and statistical analysis of the results are shown in Table III. Five of the reagent blank peak area readings were zero and the sixth reading was 1 and was an outlier. The near lack of a blank signal does not satisfy a strict interpretation of the IUPAC method for determining the detection limits. Therefore, the standard deviation of the six peak area readings of the 0.2 ng/mL cadmium standard, 0.75 abs-sec, was used to calculate the detection limits by the IUPAC method. The slope, m, as calculated by a linear regression plot of the peak area (abs-sec) readings (shown in Table IV) of the 0.2 to 10 ng/mL cadmium standards versus their concentration is 51.5 abs-sec/(ng/mL).
4.7.3. If 0.75 abs-sec (sd) and 51.5 abs-sec/(ng/mL) (m) are used in Eqn. 1 (Sect. 4.1.3.), the qualitative and quantitative detection limits as determined by the IUPAC method are:
4.7.4. The peak area (abs-sec) readings of the Cd standards from 0.2 to 40 ng/mL and the statistical analysis of the results are given in Table IV. The recommended standard working range for AAS-HGA analysis is 0.2 to 20 ng/mL. The standard of lowest concentration in the recommended working range is slightly greater than the calculated quantitative detection limit, 0.15 ng/mL. The deviation from linearity of the peak area readings of the 20 ng/mL standard, the highest concentration standard in the recommended working range, is approximately 10%. The deviations from linearity of the peak area readings of the 30 and 40 ng/mL standards are significantly greater than 10%. As shown in Table IV, the precision of the peak area readings are satisfactory throughout the recommended working range; the relative standard deviations of the readings range from 0.025 to 0.083.
4.8.1. Four sets of spiked MCEF samples were prepared by injecting 20 µL of 10, 50, 100 and 200 µg/mL dilute cadmium stock solutions on 37 mm diameter filters (part no. AAWP 037 00, Millipore Corp., Bedford, MA) with a calibrated micropipet. The dilute stock solutions were prepared by making appropriate serial dilutions of a commercially available 1,000 µg/mL cadmium standard stock solution (RICCA Chemical Co., Lot# A102) with the diluting solution (4% HNO
4.8.2. The air-dried spiked filters were digested and analyzed for their cadmium content by flame atomic absorption spectroscopy (AAS) following the procedure described in Section 3. The 0.02 to 2.0µg/mL cadmium standards (the suggested working range) were used in the analysis of the spiked filters.
4.8.3. The results of the analysis are given in Table V. One result at 0.5 times the TWA PEL target concentration was an outlier and was excluded from statistical analysis. Experimental justification for rejecting it is that the outlier value was probably due to a spiking error. The coefficients of variation for the three test levels at 0.5 to 2.0 times the TWA PEL target concentration passed the Bartlett's test and were pooled.
4.8.4. The average recovery of the six spiked filter samples at 0.1 times the TWA PEL target concentration was 118.2% with a coefficient of variation (CV
4.9.1. Three sets of spiked MCEF samples were prepared by injecting 15µL of 5, 10 and 20 µg/mL dilute cadmium stock solutions on 37 mm diameter filters (part no. AAWP 037 00, Millipore Corp., Bedford, MA) with a calibrated micropipet. The dilute stock solutions were prepared by making appropriate serial dilutions of a commercially available certified 1,000 µg/mL cadmium standard stock solution (Fisher Chemical Co., Lot# 913438-24) with the diluting solution (4% HNO
4.9.2. The air-dried spiked filters were digested and analyzed for their cadmium content by flameless atomic absorption spectroscopy using a heated graphite furnace atomizer following the procedure described in Section 3. A five-fold dilution of the spiked filter samples at 2 times the Action Level TWA was made prior to their analysis. The 0.05 to 20 ng/mL cadmium standards were used in the analysis of the spiked filters.
4.9.3. The results of the analysis are given in Table VI. There were no outliers. The coefficients of variation for the three test levels at 0.5 to 2.0 times the Action Level TWA PEL passed the Bartlett's test and were pooled. The average recovery of the spiked filter samples was 94.2% with a pooled coefficient of variation (CV
The experiments performed in this evaluation show the two atomic absorption analytical techniques included in this method to be precise and accurate and have sufficient sensitivity to measure airborne cadmium over a broad range of exposure levels and sampling periods.
5.1. Slavin, W. Graphite Furnace AAS—A Source Book; Perkin-Elmer Corp., Spectroscopy Div.: Ridgefield, CT, 1984; p. 18 and pp. 83-90.
5.2. Grosser, Z., Ed.; Techniques in Graphite Furnace Atomic Absorption Spectrophotometry; Perkin-Elmer Corp., Spectroscopy Div.: Ridgefield, CT, 1985.
5.3. Occupational Safety and Health Administration Salt Lake Technical Center: Metal and Metalloid Particulate in Workplace Atmospheres (Atomic Absorption) (USDOL/OSHA Method No. ID-121). In OSHA Analytical Methods Manual 2nd ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 1991.
5.4. Occupational Safety and Health Administration Salt Lake Technical Center: Metal and Metalloid Particulate in Workplace Atmospheres (ICP) (USDOL/OSHA Method No. ID-125G). In OSHA Analytical Methods Manual 2nd ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 1991.
5.5. Windholz, M., Ed.; The Merck Index, 10th ed.; Merck & Co.: Rahway, NJ, 1983.
5.6. Analytical Methods for Atomic Absorption Spectrophotometry, The Perkin-Elmer Corporation: Norwalk, CT, 1982.
5.7. Slavin, W., D.C. Manning, G. Carnrick, and E. Pruszkowska: Properties of the Cadmium Determination with the Platform Furnace and Zeeman Background Correction. Spectrochim. Acta 38B:1157-1170 (1983).
5.8. Occupational Safety and Health Administration Salt Lake Technical Center: Standard Operating Procedure for Atomic Absorption. Salt Lake City, UT: USDOL/OSHA-SLTC, In progress.
5.9. Occupational Safety and Health Administration Salt Lake Technical Center: AAS-HGA Standard Operating Procedure. Salt Lake City, UT: USDOL/OSHA-SLTC, In progress.
5.10. Mandel, J.: Accuracy and Precision, Evaluation and Interpretation of Analytical Results, The Treatment of Outliers. In Treatise On Analytical Chemistry, 2nd ed., Vol.1, edited by I. M. Kolthoff and P. J. Elving. New York: John Wiley and Sons, 1978. pp. 282-285.
5.11. National Institute for Occupational Safety and Health: Documentation of the NIOSH Validation Tests by D. Taylor, R. Kupel, and J. Bryant (DHEW/NIOSH Pub. No. 77-185). Cincinnati, OH: National Institute for Occupational Safety and Health, 1977.
5.12. Occupational Safety and Health Administration Analytical Laboratory: Precision and Accuracy Data Protocol for Laboratory Validations. In OSHA Analytical Methods Manual 1st ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists (Pub. No. ISBN: 0-936712-66-X), 1985.
5.13. Long, G.L. and J.D. Winefordner: Limit of Detection—A Closer Look at the IUPAC Definition. Anal.Chem. 55:712A-724A (1983).
5.14. American Conference of Governmental Industrial Hygienists: Documentation of Threshold Limit Values and Biological Exposure Indices. 5th ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 1986.
Table I—Cd Detection Limit Study
[Flame AAS Analysis]
STD (µg/mL) | Absorbance reading at 228.8 nm | Statistical analysis |
---|---|---|
Reagent blank | 5 2
4 3 4 3 | n = 6.
mean = 3.50. std dev = 1.05. CV = 0.30. |
0.001 | 6 6
2 4 6 6 | n = 6.
mean = 5.00. std dev = 1.67. CV = 0.335. |
0.002 | 5 7
7 3 7 4 | n = 6.
mean = 5.50. std dev = 1.76. CV = 0.320. |
0.005 | 7 7
8 8 8 6 | n = 6.
mean = 7.33. std dev = 0.817. CV = 0.111. |
0.010 | 10 9
10 13 10 10 | n = 6.
mean = 10.3. std dev = 1.37. CV = 0.133. |
0.020 | 20 23
20 22 20 20 | n = 6.
mean = 20.8. std dev = 1.33. CV = 0.064. |
0.050 | 42 42
42 42 42 45 | n = 6.
mean = 42.5. std dev = 1.22. CV = 0.029. |
0.10 | 84
80 83 | n = 3.
mean = 82.3. std dev = 2.08. CV = 0.025. |
Table II—Cd Standard Working Range Study
[Flame AAS Analysis]
STD (µg/mL) | Absorbance reading at 228.8 nm | Statistical analysis |
---|---|---|
Reagent blank | 5 2
4 3 4 3 | n = 6.
mean = 3.50. std dev = 1.05. CV = 0.30. |
0.020 | 20 23
20 22 20 20 | n = 6.
mean = 20.8. std dev = 1.33. CV = 0.064. |
0.050 | 42 42
42 42 42 45 | n = 6.
mean = 42.5. std dev = 1.22. CV = 0.029. |
0.10 | 84
80 83 | n = 3.
mean = 82.3. std dev = 2.08. CV = 0.025. |
0.20 | 161
161 158 | n = 3.
mean = 160.0. std dev = 1.73. CV = 0.011. |
0.50 | 391
389 393 | n = 3.
mean = 391.0. std dev = 2.00. CV = 0.005. |
1.00 | 760
748 752 | n = 3.
mean = 753.3. std dev = 6.11. CV = 0.008. |
2.00 | 1416
1426 1401 | n = 3.
mean = 1414.3. std dev = 12.6. CV = 0.009. |
Table III—Cd Detection Limit Study
[AAS-HGA Analysis]
STD (ng/mL) | Peak area readings × 10 3 at 228.8 nm | Statistical analysis |
---|---|---|
Reagent blank | 0 0
0 1 0 0 | n = 6.
mean = 0.167. std dev = 0.41. CV = 2.45. |
0.1 | 8 6
5 7 13 7 | n = 6.
mean = 7.7. std dev = 2.8. CV = 0.366. |
0.2 | 11 13
11 12 12 12 | n = 6.
mean = 11.8. std dev = 0.75. CV = 0.064. |
0.5 | 28 33
26 28 28 30 | n = 6.
mean = 28.8. std dev = 2.4. CV = 0.083. |
1.0 | 52 55
56 58 54 54 | n = 6.
mean = 54.8. std dev = 2.0. CV = 0.037. |
2.0 | 101 112
110 110 110 110 | n = 6.
mean = 108.8. std dev = 3.9. CV = 0.036. |
Table IV—Cd Standard Working Range Study
[AAS-HGA Analysis]
STD (ng/mL) | Peak area readings × 10 3 at 228.8 nm | Statistical analysis |
---|---|---|
0.2 | 11 13
11 12 12 12 | n = 6.
mean = 11.8. std dev = 0.75. CV = 0.064. |
0.5 | 28 33
26 28 28 30 | n = 6.
mean = 28.8. std dev = 2.4. CV = 0.083. |
1.0 | 52 55
56 58 54 54 | n = 6.
mean = 54.8. std dev = 2.0. CV = 0.037. |
2.0 | 101 112
110 110 110 110 | n = 6.
mean = 108.8. std dev = 3.9. CV = 0.036. |
5.0 | 247 265
268 275 259 279 | n = 6.
mean = 265.5. std dev = 11.5. CV = 0.044. |
10.0 | 495 520
523 513 516 533 | n = 6.
mean = 516.7. std dev = 12.7. CV = 0.025. |
20.0 | 950 953
951 958 949 890 | n = 6.
mean = 941.8. std dev = 25.6. CV = 0.027. |
30.0 | 1269 1291
1303 1307 1295 1290 | n = 6.
mean = 1293. std dev = 13.3. CV = 0.010. |
40.0 | 1505 1567
1535 1567 1566 1572 | n = 6.
mean = 1552. std dev = 26.6. CV = 0.017. |
Table V—Analytical Method Recovery
[Flame AAS Analysis]
Test level | 0.5 × | Percent rec. | µg taken | 1.0 × | Percent rec. | µg taken | 2.0 × | Percent rec. |
---|---|---|---|---|---|---|---|---|
µg taken | µg found | µg found | µg found | |||||
1.00 | 1.0715 | 107.2 | 2.00 | 2.0688 | 103.4 | 4.00 | 4.1504 | 103.8 |
1.00 | 1.0842 | 108.4 | 2.00 | 2.0174 | 100.9 | 4.00 | 4.1108 | 102.8 |
1.00 | 1.0842 | 108.4 | 2.00 | 2.0431 | 102.2 | 4.00 | 4.0581 | 101.5 |
1.00 | *1.0081 | *100.8 | 2.00 | 2.0431 | 102.2 | 4.00 | 4.0844 | 102.1 |
1.00 | 1.0715 | 107.2 | 2.00 | 2.0174 | 100.9 | 4.00 | 4.1504 | 103.8 |
1.00 | 1.0842 | 108.4 | 2.00 | 2.0045 | 100.2 | 4.00 | 4.1899 | 104.7 |
n= | 5 | 6 | 6 | |||||
mean = | 107.9 | 101.6 | 103.1 | |||||
std dev = | 0.657 | 1.174 | 1.199 | |||||
CV | 0.006 | 0.011 | 0.012 | |||||
CV |
* Rejected as an outlier—this value did not pass the outlier T-test at the 99% confidence level.
Test level | 0.1 × | Percent rec. |
---|---|---|
µg taken | µg found | |
0.200 | 0.2509 | 125.5 |
0.200 | 0.2509 | 125.5 |
0.200 | 0.2761 | 138.1 |
0.200 | 0.2258 | 112.9 |
0.200 | 0.2258 | 112.9 |
0.200 | 0.1881 | 94.1 |
n= | 6 | |
mean = | 118.2 | |
std dev = | 15.1 | |
CV | 0.128 |
Table VI—Analytical Method Recovery
[AAS-HGA analysis]
Test level | 0.5 × | Percent rec. | ng taken | 1.0 × | Percent rec. | ng taken | 2.0 × | Percent rec. |
---|---|---|---|---|---|---|---|---|
ng taken | ng found | ng found | ng found | |||||
75 | 71.23 | 95.0 | 150 | 138.00 | 92.0 | 300 | 258.43 | 86.1 |
75 | 71.47 | 95.3 | 150 | 138.29 | 92.2 | 300 | 258.46 | 86.2 |
75 | 70.02 | 93.4 | 150 | 136.30 | 90.9 | 300 | 280.55 | 93.5 |
75 | 77.34 | 103.1 | 150 | 146.62 | 97.7 | 300 | 288.34 | 96.1 |
75 | 78.32 | 104.4 | 150 | 145.17 | 96.8 | 300 | 261.74 | 87.2 |
75 | 71.96 | 95.9 | 150 | 144.88 | 96.6 | 300 | 277.22 | 92.4 |
n= | 6 | 6 | 6 | |||||
mean = | 97.9 | 94.4 | 90.3 | |||||
std dev = | 4.66 | 2.98 | 4.30 | |||||
CV | 0.048 | 0.032 | 0.048 | |||||
CV |
BOC = Background Offset Correction.
Zeeman Graphite Furnace (Perkin-Elmer Model HGA-600)
Step | Ramp time (sec) | Hold time (sec) | Temp. (°C) | Argon flow (mL/min) | Read (sec) |
---|---|---|---|---|---|
1) Predry | 5 | 10 | 90 | 300 | |
2) Dry | 30 | 10 | 140 | 300 | |
3) Char | 10 | 20 | 900 | 300 | |
4) Cool Down | 1 | 8 | 30 | 300 | |
5) Atomize | 0 | 5 | 1600 | 0 | −1 |
6) Burnout | 1 | 8 | 2500 | 300 |
Under the final OSHA cadmium rule (29 CFR part 1910), monitoring of biological specimens and several periodic medical examinations are required for eligible employees. These medical examinations are to be conducted regularly, and medical monitoring is to include the periodic analysis of cadmium in blood (CDB), cadmium in urine (CDU) and beta-2-microglobulin in urine (B2MU). As CDU and B2MU are to be normalized to the concentration of creatinine in urine (CRTU), then CRTU must be analyzed in conjunction with CDU and B2MU analyses.
The purpose of this protocol is to provide procedures for establishing and maintaining the quality of the results obtained from the analyses of CDB, CDU and B2MU by commercial laboratories. Laboratories conforming to the provisions of this nonmandatory protocol shall be known as “participating laboratories.” The biological monitoring data from these laboratories will be evaluated by physicians responsible for biological monitoring to determine the conditions under which employees may continue to work in locations exhibiting airborne-cadmium concentrations at or above defined actions levels (see paragraphs (l)(3) and (l)(4) of the final rule). These results also may be used to support a decision to remove workers from such locations.
Under the medical monitoring program for cadmium, blood and urine samples must be collected at defined intervals from workers by physicians responsible for medical monitoring; these samples are sent to commercial laboratories that perform the required analyses and report results of these analyses to the responsible physicians. To ensure the accuracy and reliability of these laboratory analyses, the laboratories to which samples are submitted should participate in an ongoing and efficacious proficiency testing program. Availability of proficiency testing programs may vary with the analyses performed.
To test proficiency in the analysis of CDB, CDU and B2MU, a laboratory should participate either in the interlaboratory comparison program operated by the Centre de Toxicologie du Quebec (CTQ) or an equivalent program. (Currently, no laboratory in the U.S. performs proficiency testing on CDB, CDU or B2MU.) Under this program, CTQ sends participating laboratories 18 samples of each analyte (CDB, CDU and/or B2MU) annually for analysis. Participating laboratories must return the results of these analyses to CTQ within four to five weeks after receiving the samples.
The CTQ program pools analytical results from many participating laboratories to derive consensus mean values for each of the samples distributed. Results reported by each laboratory then are compared against these consensus means for the analyzed samples to determine the relative performance of each laboratory. The proficiency of a participating laboratory is a function of the extent of agreement between results submitted by the participating laboratory and the consensus values for the set of samples analyzed.
Proficiency testing for CRTU analysis (which should be performed with CDU and B2MU analyses to evaluate the results properly) also is recommended. In the U.S., only the College of American Pathologists (CAP) currently conducts CRTU proficiency testing; participating laboratories should be accredited for CRTU analysis by the CAP.
Results of the proficiency evaluations will be forwarded to the participating laboratory by the proficiency-testing laboratory, as well as to physicians designated by the participating laboratory to receive this information. In addition, the participating laboratory should, on request, submit the results of their internal Quality Assurance/Quality Control (QA/QC) program for each analytic procedure (i.e., CDB, CDU and/or B2MU) to physicians designated to receive the proficiency results. For participating laboratories offering CDU and/or B2MU analyses, QA/QC documentation also should be provided for CRTU analysis. (Laboratories should provide QA/QC information regarding CRTU analysis directly to the requesting physician if they perform the analysis in-house; if CRTU analysis is performed by another laboratory under contract, this information should be provided to the physician by the contract laboratory.)
QA/QC information, along with the actual biological specimen measurements, should be provided to the responsible physician using standard formats. These physicians then may collate the QA/QC information with proficiency test results to compare the relative performance of laboratories, as well as to facilitate evaluation of the worker monitoring data. This information supports decisions made by the physician with regard to the biological monitoring program, and for mandating medical removal.
This protocol describes procedures that may be used by the responsible physicians to identify laboratories most likely to be proficient in the analysis of samples used in the biological monitoring of cadmium; also provided are procedures for record keeping and reporting by laboratories participating in proficiency testing programs, and recommendations to assist these physicians in interpreting analytical results determined by participating laboratories. As the collection and handling of samples affects the quality of the data, recommendations are made for these tasks. Specifications for analytical methods to be used in the medical monitoring program are included in this protocol as well.
In conclusion, this document is intended as a supplement to characterize and maintain the quality of medical monitoring data collected under the final cadmium rule promulgated by OSHA (29 CFR part 1910). OSHA has been granted authority under the Occupational Safety and Health Act of 1970 to protect workers from the effects of exposure to hazardous substances in the work place and to mandate adequate monitoring of workers to determine when adverse health effects may be occurring. This nonmandatory protocol is intended to provide guidelines and recommendations to improve the accuracy and reliability of the procedures used to analyze the biological samples collected as part of the medical monitoring program for cadmium.
When the terms below appear in this protocol, use the following definitions.
Accuracy: A measure of the bias of a data set. Bias is a systematic error that is either inherent in a method or caused by some artifact or idiosyncracy of the measurement system. Bias is characterized by a consistent deviation (positive or negative) in the results from an accepted reference value.
Arithmetic Mean: The sum of measurements in a set divided by the number of measurements in a set.
Blind Samples: A quality control procedure in which the concentration of analyte in the samples should be unknown to the analyst at the time that the analysis is performed.
Coefficient of Variation: The ratio of the standard deviation of a set of measurements to the mean (arithmetic or geometric) of the measurements.
Compliance Samples: Samples from exposed workers sent to a participating laboratory for analysis.
Control Charts: Graphic representations of the results for quality control samples being analyzed by a participating laboratory.
Control Limits: Statistical limits which define when an analytic procedure exceeds acceptable parameters; control limits provide a method of assessing the accuracy of analysts, laboratories, and discrete analytic runs.
Control Samples: Quality control samples.
F/T: The measured amount of an analyte divided by the theoretical value (defined below) for that analyte in the sample analyzed; this ratio is a measure of the recovery for a quality control sample.
Geometric Mean: The natural antilog of the mean of a set of natural log-transformed data.
Geometric Standard Deviation: The antilog of the standard deviation of a set of natural log-transformed data.
Limit of Detection: Using a predefined level of confidence, this is the lowest measured value at which some of the measured material is likely to have come from the sample.
Mean: A central tendency of a set of data; in this protocol, this mean is defined as the arithmetic mean (see definition of arithmetic mean above) unless stated otherwise.
Performance: A measure of the overall quality of data reported by a laboratory.
Pools: Groups of quality-control samples to be established for each target value (defined below) of an analyte. For the protocol provided in attachment 3, for example, the theoretical value of the quality control samples of the pool must be within a range defined as plus or minus (±) 50% of the target value. Within each analyte pool, there must be quality control samples of at least 4 theoretical values.
Precision: The extent of agreement between repeated, independent measurements of the same quantity of an analyte.
Proficiency: The ability to satisfy a specified level of analyte performance.
Proficiency Samples: Specimens, the values of which are unknown to anyone at a participating laboratory, and which are submitted by a participating laboratory for proficiency testing.
Quality or Data Quality: A measure of the confidence in the measurement value.
Quality Control (QC) Samples: Specimens, the value of which is unknown to the analyst, but is known to the appropriate QA/QC personnel of a participating laboratory; when used as part of a laboratory QA/QC program, the theoretical values of these samples should not be known to the analyst until the analyses are complete. QC samples are to be run in sets consisting of one QC sample from each pool (see definition of “pools” above).
Sensitivity: For the purposes of this protocol, the limit of detection.
Standard Deviation: A measure of the distribution or spread of a data set about the mean; the standard deviation is equal to the positive square root of the variance, and is expressed in the same units as the original measurements in the data set.
Standards: Samples with values known by the analyst and used to calibrate equipment and to check calibration throughout an analytic run. In a laboratory QA/QC program, the values of the standards must exceed the values obtained for compliance samples such that the lowest standard value is near the limit of detection and the highest standard is higher than the highest compliance sample or QC sample. Standards of at least three different values are to be used for calibration, and should be constructed from at least 2 different sources.
Target Value: Those values of CDB, CDU or B2MU which trigger some action as prescribed in the medical surveillance section of the regulatory text of the final cadmium rule. For CDB, the target values are 5, 10 and 15 µg/l. For CDU, the target values are 3, 7, and 15 µg/g CRTU. For B
Theoretical Value (or Theoretical Amount): The reported concentration of a quality-control sample (or calibration standard) derived from prior characterizations of the sample.
Value or Measurement Value: The numerical result of a measurement.
Variance: A measure of the distribution or spread of a data set about the mean; the variance is the sum of the squares of the differences between the mean and each discrete measurement divided by one less than the number of measurements in the data set.
This protocol provides procedures for characterizing and maintaining the quality of analytic results derived for the medical monitoring program mandated for workers under the final cadmium rule.
The goal of this protocol is to assure that medical monitoring data are of sufficient quality to facilitate proper interpretation. The data quality objectives (DQOs) defined for the medical monitoring program are summarized in Table 1. Based on available information, the DQOs presented in Table 1 should be achievable by the majority of laboratories offering the required analyses commercially; OSHA recommends that only laboratories meeting these DQOs be used for the analysis of biological samples collected for monitoring cadmium exposure.
Table 1—Recommended Data Quality Objectives (DQOs) for the Cadmium Medical Monitoring Program
Analyte/concentration pool | Limit of detection | Precision (CV) (%) | Accuracy |
---|---|---|---|
Cadmium in blood | 0.5 µg/l | ±1 µg/l or 15% of the mean. | |
≤2 µg/l | 40 | ||
>2µg/l | 20 | ||
Cadmium in urine | 0.5 µg/g creatinine | ±1 µg/l or 15% of the mean. | |
≤2 µg/l creatinine | 40 | ||
>2µg/l creatinine | 20 | ||
β-2-microglobulin in urine: 100 µg/g creatine | 100 µg/g creatinine | 5 | ±15% of the mean. |
To satisfy the DQOs presented in Table 1, OSHA provides the following guidelines:
1. Procedures for the collection and handling of blood and urine are specified (Section 3.4.1 of this protocol);
2. Preferred analytic methods for the analysis of CDB, CDU and B2MU are defined (and a method for the determination of CRTU also is specified since CDU and B2MU results are to be normalized to the level of CRTU).
3. Procedures are described for identifying laboratories likely to provide the required analyses in an accurate and reliable manner;
4. These guidelines (Sections 3.2.1 to 3.2.3, and Section 3.3) include recommendations regarding internal QA/QC programs for participating laboratories, as well as levels of proficiency through participation in an interlaboratory proficiency program;
5. Procedures for QA/QC record keeping (Section 3.3.2), and for reporting QC/QA results are described (Section 3.3.3); and,
6. Procedures for interpreting medical monitoring results are specified (Section 3.4.3).
Methods recommended for the biological monitoring of eligible workers are:
1. The method of Stoeppler and Brandt (1980) for CDB determinations (limit of detection: 0.5 µg/l);
2. The method of Pruszkowska et al. (1983) for CDU determinations (limit of detection: 0.5 µg/l of urine); and,
3. The Pharmacia Delphia test kit (Pharmacia 1990) for the determination of B2MU (limit of detection: 100 µg/l urine).
Because both CDU and B2MU should be reported in µg/g CRTU, an independent determination of CRTU is recommended. Thus, both the OSHA Salt Lake City Technical Center (OSLTC) method (OSHA, no date) and the Jaffe method (Du Pont, no date) for the determination of CRTU are specified under this protocol (i.e.<